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Abstract

In this paper, I argue that there is an unnoticed ambiguity in

standard presentations of the so-called Galilean principle of relativ-

ity, roughly, the principle that says the laws of mechanical systems

are the same in all inertial systems. In particular, I argue that stan-

dard presentations fail to distinguish between what ultimately are two

inequivalent principles, which I call “External Galilean Relativity Prin-

ciple” (EGRP) and “Internal Galilean Relativity Principle” (IGRP).

IGRP concerns the invariance of the laws of mechanical systems as

seen from the perspective of a co-moving inertial frame. The paper

is structured into three main parts. The first is mostly historical and

shows that when physicists define and explain the Galilean principle of

relativity, they sometimes refer to IGRP, some other times to EGRP,

and sometimes to both. In the second part, I prove that IGRP and

EGRP are not just two different versions of the very same principle but

actually two inequivalent principles altogether. A direct and surprising

implication of this result is that the laws of some (properly isolated)

mechanical systems are not the same in all inertial systems. In the

1

eugen
Typewritten Text
laws of springs are also relative to rest frame, (lab frame) when you do IGRP what's the difference with just the local rest frame of the system?What's the status of EGRP vs IGRP? Is one 'better'? (or 'more' relativistic?)



third part, I show how the distinction between IGRP and EGRP offers

new insights into recent debates on the philosophy of symmetries.
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1 Introduction

Imagine a guitarist (let’s call her Alberta) playing in the restaurant cabin

of a luxurious high-speed train. Because she was asked to do so by a girl in

the audience, Alberta plays the very same piece when the train is parked at
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the station and, about an hour later, when the train is uniformly moving at

350 kph. To the trained ears of those in the audience (and Alberta herself),

the tone of the chords is exactly the same in both cases. But why? A

quick answer is that Alberta is using a good guitar that does not go out

of tune in less than an hour. Sure, but what we are really asking is why

is it that changes in the velocity of the train (and the guitar) with respect

to the ground do not produce changes in the sound produced by the guitar

as perceived in the cabin. A natural answer that comes to mind is that

the waves associated with the guitar’s strings are a classical phenomenon

and thus satisfy the so-called “principle of Galilean relativity,” roughly, the

principle according to which the laws of mechanical systems are the same in

all inertial frames. In slightly more detail, due to the principle of Galilean

relativity, the laws for classical waves (such as the ones in the strings and

also the sound waves propagating in the cabin) must remain invariant when

we go from the inertial frame given by the cabin when parked to the inertial

frame given by the cabin when moving at 350 kph (in slightly more technical

jargon, these laws should remain invariant under Galilean boosts). Since

these laws are the same in both frames, it follows that the vibrations in the

strings are the same in both frames (when considering the same chords).

Indeed, this is similar to what Einstein said when explaining a similar case:

We should expect [if the principle of Galilean relativity is not

true], for instance, that the note emitted by an organ-pipe placed

with its axis parallel to the direction of travel [of Earth] would

be different from that emitted if the axis of the pipe were placed
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perpendicular to this direction [Einstein, 2015, p. 25-26].

So far so good, but there is a problem. Just as it happens with the

case of electromagnetic waves, the laws governing acoustic waves and string

waves are not invariant under Galilean boosts, and so these laws do not

satisfy the Galilean principle of relativity. Hence, the explanation to our

original question (and Einstein’s explanation of the organ-pipe case) needs

to be revisited, or so it would seem.

In this paper, I will argue that there is an unnoticed ambiguity in stan-

dard presentations of the Galilean principle of relativity. In particular, I ar-

gue that standard presentations fail to distinguish between what ultimately

are two inequivalent principles of mechanics, which I call “External Galilean

Relativity Principle” (EGRP) and “Internal Galilean Relativity Principle”

(IGRP). I will show that these two principles are associated with two differ-

ent ways in which the laws of mechanical systems can be said to be invari-

ant under Galilean transformations, both of which play important roles in

physics. Let me highlight two important implications of my view that will

be developed in due time. First, there are cases where the laws of a certain

system are not invariant under Galilean transformations, and yet such a

system obeys one formulation of the Galilean relativity principle. Second,

the ambiguity in the standard formulation of the relativity principle (which

conflates two distinct principles) is very similar to one that affects various

theses heavily discussed in the recent philosophical literature on symme-

tries. This suggests that the ambiguity in standard presentations of the

Galilean principle of relativity noticed in this paper might ultimately be a
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result of a deeper ambiguity associated with standard definitions of physical

symmetries more generally.

In section 2, I start with a brief historical overview of the Galilean prin-

ciple of relativity and discuss some standard attempts at deriving the princi-

ple. Then, in section 3, I show that there are actually two different principles

under the name “relativity principle,” namely, IGRP and EGRP. In section

4, I show that although various mechanical systems obey both principles,

some do not. In section 5.1, I discuss some implications of this kind of

framework regarding other recent debates in the philosophical literature on

symmetries.

Before we dive in, let me note that everything I say here about the

Galilean version of the relativity principle extends to the more general prin-

ciple that Einstein introduces in his theory of special relativity (that one

was supposed to include, in addition to mechanical systems, electromagnetic

ones). But for reasons of space, and also to avoid unnecessary technicalities,

I have decided to keep the discussion focused on the case of mechanics.

2 From Ships to Trains

In this section, we will go through some important moments in the history

of the principle of relativity (restricted to mechanics). While the insights

offered here might be familiar to historians of science, they serve as a foun-

dation before we venture into the deeper philosophical implications of the

principle. Let me add two warnings before we proceed. First, it is unclear

that there is one single thesis (one single principle) picked out by the name
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“relativity principle.” Second, not all physicists have regarded it to be a

principle to begin (or regard them to be principles, if more than one). In-

stead, as we will see, many have thought of it (them) as a corollary that can

be derived from other basic laws and principles. However, for the purpose

of this section, I’ll adhere to the traditional terminology used in history,

philosophy, and physics, which is to use the phrase “principle of relativity.”

I urge readers not to be overly fixated on the specific wording or its singular

implication. We’ll circle back to these nuances in later sections.

2.1 Galileo

In Day Two of his Dialogues, Galileo (through Salviati) responded to var-

ious arguments aiming to defend the idea that the Earth does not move.

The basic structure of these arguments was rather simple: If the Earth were

in motion, this movement would manifest in observable effects on the be-

havior of objects on its surface, such as cannon balls and birds. Since we

don’t observe these effects, it then follows that the Earth remains station-

ary. Galileo’s response centered on arguing that it was not true that the

Earth’s motion would produce any such effects, just as it is not true that

the uniform motion of a ship produces any effects on the behavior of objects

in the cabin of such a ship. When introducing what was going to become

one of the most famous thought experiments in physics, Galileo said:

Shut yourself up with some friend in the main cabin below decks

on some large ship, and have with you there some flies, butter-

flies, and other small flying animals. Have a large bowl of water
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with some fish in it; hang up a bottle that empties drop by drop

into a wide vessel beneath it. With the ship standing still, ob-

serve carefully how the little animals fly with equal speed to all

sides of the cabin. The fish swim indifferently in all directions;

the drops fall into the vessel beneath; [...] When you have ob-

served all these things carefully [. . . ], have the ship proceed with

any speed you like, so long as the motion is uniform and not

fluctuating this way and that. You will discover not the least

change in all the effects named, nor could you tell from any of

them whether the ship was moving or standing still. In throwing

something to your companion, you will need no more force to

get it to him whether he is in the direction of the bow or the

stern, with yourself situated opposite. [. . . ] the butterflies and

flies will continue their flights indifferently toward every side,

nor will it ever happen that they are concentrated toward the

stern, as if tired out from keeping up with the course of the ship,

from which they will have been separated during long intervals

by keeping themselves in the air. [. . . ] The cause of all these

correspondences of effects is the fact that the ship’s motion is

common to all the things contained in it, and to the air also.

Galilei [1967]

It is easy to see why so many, including Einstein himself, attributed the

principle of relativity (or a version of it) to Galileo. For it is very natural

to read this passage as saying that the behavior of physical systems does
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not depend on the inertial frame used to describe them; the inertial frame

associated with the ship at rest in the port, or the one given by the ship

when sailing uniformly, lead to the exact same observations concerning the

behavior of objects inside the cabin. But we should be careful when reading

this passage from the lenses of a modern perspective given that for Galileo,

motion with uniform speed around a circular path (not a straight one),

such as the case of a ship navigating around the globe, would be an instance

of inertial motion. Of course, there is not much harm for us in treating

the ship as an (approximate) inertial frame because the curvature of the

Earth is negligible given the relevant time and spatial scales involved in the

experiments in the ship’s cabin. And in any case, if we modify the example

so that the ship is really following an inertial path as understood today, say

if we consider a ship in outer space moving far away from any other bodies,

then the passage in question would indeed illustrate the relativity principle

as understood today. So, it is fair to say that this passage by Galileo does

portray a very close cousin of the Galilean relativity principle as understood

today.1.

Another important point that we can conclude from the passage is that

Galileo does not seem to treat his relativity principle (if we can call it that)

as a principle but rather as some sort of consequence of other laws and

principles (we will see that many scholars have followed Galileo in aiming

to provide a derivation of the principle from other laws and principles).

1It is also useful to note that Galileo developed a theory of the tides that depended on
the claim that certain states of circular motion around the Earth, such as the motion of
the seas with respect to the Earth itself, do produce detectable effects. That theory seems
to be in conflict with the relativity principle expressed in his passage (see Buchwald and
Fox [2014, p. 793])
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Galileo, in particular, explains why the systems inside the cabin behave the

same way regardless of the cabin’s uniform speed in this manner: “The cause

of all these correspondences of effects is the fact that the ship’s motion is

common to all the things contained in it, and to the air also.” But what,

exactly, does this mean? Galileo seems to be alluding to some combination

of both his law of inertia together with his principle of the composition of

motion. For example, think of the drops in the cabin that fall into the vessel

beneath. As a drop is about to fall, it shares in the horizontal motion of the

bottle, which is the motion of the ship. This is analogous to a cannonball

inside a cannon pointed vertically; as the Earth rotates eastward, the ball

inside moves eastward as well, even though it appears to remain stationary

inside the cannon [Galilei, 1967, p. 176]. Once the drop leaves the bottle, it

will “preserve” the same horizontal motion it already had simply because no

other object or force interferes with its horizontal trajectory. Hence, some

combination of the composition of motion and his law of inertia guarantees

that “the ship’s motion is common to all the things contained in it, and to

the air also.”

Unfortunately for Galileo, even if we were to replace his law of inertia

with the Newtonian version (as presented in Newton’s first law), his expla-

nation would still be defective simply because many of the systems described

in the cabin of the ship are not moving inertially (not even approximately).

In the passage, we see references to things like the force required to throw

something to your partner, the effort fish must make to swim, or the fact

that butterflies don’t get more tired if they fly in a direction opposite to the

boat’s movement direction. These examples are not instances of inertial sys-
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tems because they appeal to forces of one kind or the other. Clearly, then,

whatever the explanation of why these objects behave the same inside the

cabin for two different states of motion of the ship is, it cannot be purely

based on the law of inertia but it will require some dynamical considera-

tions. As Brown [2005, p. 35] puts it “satisfaction of the relativity principle

is not a mere consequence of the principle of inertia: the processes concern

not just objects in motion but the dynamical mechanisms that produce that

motion.” This is precisely why, after Galileo, physicists have tried to ex-

plain the relativity principle, not through Newton’s first law but through

his second one (more on this soon).

2.2 Newton

The fifth corollary to the laws in Newton’s Principia reads like this:

Corollary V: When bodies are enclosed in a given space, their

motions in relation to one another are the same whether the

space is at rest or whether it is moving uniformly straight forward

without circular motion [Newton, 1999, p. 423].

Notice that, unlike Galileo, Newton explicitly considers straight uniform

motion. Also, note that by “space,” Newton means a system that is approx-

imately closed, for example, the cabin of a ship. Indeed, in the derivation of

the corollary that he presents just afterward, he seems to allude to Galileo’s

ship: “This is proved clearly by experience: on a ship, all the motions are

the same with respect to one another whether the ship is at rest or is mov-

ing” Newton [1999, p. 423]. Newton’s derivation of this corollary appeals
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to both the second law and a situation involving objects colliding with one

another, but it would be an understatement to say that the derivation is

lacking. Indeed, as Brown 2005 has convincingly pointed out, it is not even

valid. To see why, it might help to walk a bit slowly through an example

similar to the one Newton describes just after presenting the corollary.

Let’s consider the case where two billiard balls of the same mass, one blue

and one yellow, collide head-on on a table inside the cabin of a ship initially

at rest. Say that we track closely the motion of the balls with respect to

the table from the moment they are 5 centimeters apart (before colliding)

up to the moment they are 5 centimeters apart after the collision. Then, we

repeat the experiment, with the same initial conditions (e.g., same relative

velocities), but now the ship has some non-zero uniform velocity with respect

to the shore. We will see, of course, that the balls behave in exactly the

same manner in both experiments. Newton says:

from these sums or differences [from their relative velocities]

there arise the collisions and impulses with which the bodies

strike one another. Therefore, by law 2, the effects of the col-

lisions will be equal in both cases, and thus the motions with

respect to one another in the one case will remain equal to the

motions with respect to one another in the other case. [Newton,

1999, p. 423]

What Newton seems to be assuming is that the impulses solely depend

on the relative velocities (which are the same in both cases). If the impulses

are indeed the same, the accelerations produced during the collision will be
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the same when the ship is at rest and when it is moving uniformly. And

once we have that the accelerations are the same, and have that the initial

conditions are the same (they have the same initial velocity and position

with respect to the table), it does indeed follow that their relative motions

will be the same. The crucial premise, of course, is that the impulses are

the same if the relative velocities are the same. In modern jargon, one can

justify this premise in the following way: the force per unit of time that

a ball feels during a collision equals the change in momentum of such a

ball (Fdt = dp). And since the change in momentum only depends on the

difference between the relative velocities of the balls and the masses (we are

assuming elastic collisions), we can say that the force per unit of time only

depends on such relative velocities and masses.

If all Newton wanted to demonstrate is that the behavior of objects that

collide does not depend on the collective uniform velocity of the system (say

the ship’s velocity), then I think that this kind of derivation is enough. But,

of course, Newton is trying to establish a very general result, one that is

not restricted to one or other kind of force. Clearly, the prior derivation is

far from establishing that very general result. This is precisely why Brown

accuses Newton of committing a non sequitur in this derivation of corollary

V. Brown says that “[. . . ] significantly, Newton also presupposed the veloc-

ity independence of forces and masses” [2005, p. 37]. And a page later, he

adds “The trouble is that the velocity-independence of forces and inertial

masses is not a consequence of the laws of motion, as Barbour noted in

1989. Without this extra assumption, it is not possible to derive the relativ-

ity principle from Newton’s laws and Galilean kinematics” [2005, p. 38]. To
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be fair to Newton, however, notice that he does not say that the indepen-

dence of the (collision) forces is a consequence of the laws but only that the

collision forces solely depend on the relative velocities of the bodies. So the

non sequitur is not, contra Brown, that Newton took the non-dependence

of forces on velocity to be a consequence of his laws but rather that he did

not show nor explicitly assumed that all forces (not just collision forces) are

independent of the velocities. Without explicitly adding this premise, one

cannot reach Corollary V.

Curiously, recent physicists keep making a similar mistake when trying

to derive the relativity principle. In section 10.2 of the first volume of his

lectures, Richard Feynman says (my emphasis)

In addition to the law of conservation of momentum, there is

another interesting consequence of Newton’s Second Law, to be

proved later, but merely stated now. This principle is that the

laws of physics will look the same whether we are standing still

or moving with a uniform speed in a straight line. For example,

a child bouncing a ball in an airplane finds that the ball bounces

the same as though he were bouncing it on the ground. [. . . ]

This is the so-called relativity principle. Feynman et al. [1965,

ch. 10].

Feynman is telling us that the principle of relativity (or the Galilean

version, to be precise) is a consequence of Newton’s second law and that

he will in fact prove it later on. The alleged demonstration is presented

in chapter 15 of the same volume. There, just after writing corollary V,
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Feynman say (emphasis in the original)

This means, for example, that if a space ship is drifting along at

a uniform speed, all experiments performed in the space ship and

all the phenomena in the space ship will appear the same as if

the ship were not moving, provided, of course, that one does not

look outside. That is the meaning of the principle of relativity.

This is a simple enough idea, and the only question is whether it

is true that in all experiments performed inside a moving system

the laws of physics will appear the same as they would if the

system were standing still. Feynman et al. [1965, ch. 15]

Notice how Feynman is saying that all we need to answer now (“the only

question”) is whether this principle of relativity is true for all experiments.

The implication, of course, is that he will go on to answer such a question.

The way he aims to do that is by means of the Galilean transformations. In

particular, he asks us to consider two inertial coordinate systems in relative

motion with respect to one another. The position along the X axis in one

system is related to the position in the other system via x 7→ x− vt. Then,

Feynman says this:

If we substitute this transformation of coordinates [Galilean trans-

formations] into Newton’s laws we find that these laws transform

to the same laws in the primed system; that is, the laws of New-

ton are of the same form in a moving system as in a stationary

system, and therefore it is impossible to tell, by making mechan-
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ical experiments, whether the system is moving or not. Feynman

et al. [1965]

The problem, however, is that all the Galilean transformation on its own

can show is that the acceleration is the same in both systems; d2

dt2
(x− vt) =

d2

dt2
x. The transformation itself is silent regarding the force so Feynman

cannot just use it to show that F = ma is the same in both frames (the

transformation is also silent regarding the mass, which must be assumed to

be independent of the velocity as well). As happened to Newton, Feynman’s

derivation of the corollary is not complete unless we add the premise that all

forces are independent of the absolute velocity of the system. And Feynman

is not alone; see Susskind [2023, Ch. 1], Cline [2021, p. 9567], and Moataz

[2021, p. 7] for some recent examples of physicists who have overlooked this

important assumption.

It is worth pointing out that the relativity principle is not just a principle

about general laws such as F = ma (although it includes them) but about

specific laws such as, say, Newton’s law of gravitation:

−G
m2

|r1 − r2|3
(r1 − r2) =

d2r1
dt2

(1)

It is a simple exercise to show that such a law is indeed invariant un-

der transformations of the form r 7→ r − vt. And notice that showing this

already takes care of the velocity independence of the forces appearing in

the law (we do not need to assume such independence, we can prove it from

the invariance of the expression under boosts).2 This highlights that one

2See Cartwright [1999, Ch. 3] for an insightful discussion regarding the nature of the

15

eugen
Highlight

eugen
Highlight

eugen
Highlight

eugen
Highlight

eugen
Typewritten Text
what are some interesting forces which arevelocity-dependent?

eugen
Highlight



could try to derive a specific version of the relativity principle restricted to

a particular force law without having to assume the velocity independence

of the force in question (such independence is “built-in”, so to speak, in

the specific force law). Perhaps, then, a way to interpret Newton or Feyn-

man is as implicitly adopting this kind of restricted version of the relativity

principle, where the idea is not really to derive that the laws are the same

in all inertial systems purely from F = ma (which, again, does not work),

but rather from the fact that all the specific (mechanical) force laws that

we know of are, as a matter of fact, independent of the velocity (of course,

the Lorentz force depends on the velocity, which is why we are restricted

to purely mechanical systems). What if we take into consideration friction

forces on mechanical systems, such as the force produced by air on an object

falling from a building? Of course, that force does depend on the velocity

between the object and the air, but in that case, we must treat the air and

the object both as parts of an extended system. The total force on the

extended system (a gravitational force in this case) remains independent of

the velocity even though some of the internal forces depend on the velocities

between the subsystems.

Before we move on, let’s consider a question unaddressed in other discus-

sions of the relativity principle. It may seem that any mechanical system,

regardless of the specific forces involved, will satisfy Newton’s second law

(and a specific force law) in any inertial frame simply because that is what

a mechanical system should do. If it were not to satisfy Newton’s second

law in all inertial frames, why would it be a mechanical system to begin

relationship between F = ma and specific force laws.
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with? Also, and related, if there was an inertial frame such that a certain

mechanical system does not satisfy Newton’s second law in it (or does not

satisfy a specific force law in it), this would seem to imply that Newton’s

second law is not a law, to begin with (it would fail for some objects that

are supposed to fall under its domain). But if we accept that a mechanical

system must satisfy Newton’s second law in all inertial frames simply as a

matter of the definition of what mechanical systems are, then the relativity

principle would seem to follow in a rather trivial manner. Call this the “triv-

iality challenge,” as it purports to suggest that the relativity principle is a

trivial consequence of the fact that Newton’s second law (and any specific

force law) is indeed a law for mechanical systems. We will come back to this

objection in later sections.

2.3 Einstein

The reader might have noticed that our history of the relativity principle

skipped over Einstein’s own presentation, moving from Newton directly to

Feynman’s exposition. But this was on purpose. Einstein, in contrast to

these other physicists, does not try to prove or derive the principle, and

so I was trying to avoid discussing him in the same context. For Einstein,

the relativity principle is a fundamental assumption that all mechanical and

electromagnetic systems must adhere to. Using this, and assuming that the

speed of light remains constant regardless of the source’s speed, he goes on

to prove that the relationship between time and length measurements in two

different inertial frames cannot be described by the Galilean transformations
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but instead requires Lorentz transformations.3

As far as I can tell, the first use of the term “principle of relativity”

appears in Einstein’s 1905 paper on special relativity. There, he says that

the same laws of electrodynamics and optics will be valid for all

frames of reference for which the equations of mechanics hold

good. We will raise this conjecture (the purport of which will

hereafter be called the “Principle of Relativity”) to the status of

a postulate Einstein [1905].

It thus becomes clear from the moment the term was coined that the

principle of relativity ought to be treated as a postulate and not as a con-

sequence of the laws. In section 2 of the same paper, Einstein defines the

principle like this:

The laws by which the states of physical systems undergo change

are not affected, whether these changes of state be referred to

the one or the other of two systems of co-ordinates in uniform

translatory motion. Einstein [1905]

Some years later, in his popular book on relativity, Einstein introduced

a restricted version of the principle, one that was supposed to only apply to

classical mechanics. Then, he says that

3There is a debate regarding whether Einstein always viewed the principle of relativity
as a postulate that leads to the transformation properties of the laws, or if he changed his
mind later in life and believed that these transformation properties should be understood
dynamically, through the dynamical laws of material bodies. Brown [2005] believed that
Einstein later in life wanted to understand the Lorentz transformations dynamically, but
Lange [2016, Ch. 3] disagrees with that view.
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If, relative to K [an inertial system], K’ is a uniformly moving

co-ordinate system devoid of rotation, then natural phenomena

run their course with respect to K’ according to exactly the same

general laws as with respect to K. This statement is called the

principle of relativity (in the restricted sense). As long as one

was convinced that all natural phenomena were capable of repre-

sentation with the help of classical mechanics, there was no need

to doubt the validity of this principle of relativity. [Einstein,

2015, p. 24]

Notice the parenthetical remarks “in the restricted sense” precisely to

indicate that this principle was supposed to be distinguished from the one

that includes electromagnetism. Notice, also, that Einstein says that, as far

as classical mechanics is concerned, there is no need to doubt the validity of

the principle; all classical systems obey it.

3 Two different principles

3.1 Internal vs External

Recall that Einstein characterizes the principle as the claim that (classical)

natural phenomena run their course with respect to K ′ according to exactly

the same laws as with respect to K. But what does this mean, exactly?

Presumably, it means that if we describe the behavior of a physical system S

using frameK, we arrive at the same law for that system as the law we would

have arrived at had we used frame K ′. But this is still not completely clear.
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Are we considering a single mechanical system as seen from the perspective

of two different frames in relative motion with respect to one another, or are

we considering two copies or instances of the same type of system, where one

copy is co-moving with frame K and the other copy co-moving with frame

K ′? To better understand this question, consider a very simple example.

Say that Sara, inside a train, will throw a dart at a board hanging in

the front wall of the cabin (so the throw is in the direction of motion of the

train). In the cabin, we have installed a camera that records the motion of

the objects and is also capable of making measurements of speed, time, and

acceleration. Imagine, furthermore, that the cabin of the train is made out

of glass (so much for privacy), so observers outside can see what is happening

in the cabin. We also have installed a second camera outside, next to a light

post. When the cabin is passing by the light post with a constant speed of

100 kph, Sara throws the dart. We then collect the movies from the two

cameras and compare them. As expected, both recordings indicate the same

vertical acceleration (g), no horizontal acceleration, and the same time for

the dart’s flight. They also indicate different measurements for the traveled

distance and the velocity of the dart, as one camera sees things from outside

while the other one is moving together with the cabin. Crucially, both sets

of measurements are consistent with Newton’s second law. In particular,

they both recover that the dart’s weight equals the mass times the vertical

acceleration (mg = ma) and that zero horizontal force equals zero horizontal

acceleration (0 = m0). One can then say that the dart obeys F = ma in

the frames of the two cameras (in physics jargon, F = ma remains invariant

under boosts). This is then a sense in which the same phenomena (the dart’s
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behavior) “run their course with respect to K’ according to exactly the same

general laws as with respect to K.”

We again have Sara throwing a dart inside a train’s cabin. The difference

now is that instead of a single throw, we will consider two different throws,

and we will forget about the external camera. First, when the train is parked

at the station, Sara will throw the dart, and the camera in the cabin will

record the motion. Then, when the train is moving at 100 kph, Sara will

throw the dart again, with the same initial speed (with respect to her) and

at the same angle. We then collect the movies from the two throws and

compare them. As in the other case, both recordings indicate the same

vertical acceleration (g), no horizontal acceleration, and the same time for

the flight. Thus, if one recording shows that the dart satisfies g = a, the

other one will also show this. But in contrast to the previous case, now

the two recordings also show the same distance, the same velocity, and,

in general, the very same motion. In fact, we could not tell one movie

apart from the other one! We then say that both throws of the dart (each

happening at a different speed with respect to the ground) obey the very

same general law. This is then a second sense in which the same phenomena

“run their course with respect to K ′ according to exactly the same general

laws as with respect to K.”

There are, then, at least two different senses for the phrase “obeying the

same laws in different inertial frames” and so two readings of the relativity

principle (or two different relativity principles altogether). In one sense,

that I call “external,” the phrase means obeying the same laws for a given

single system simultaneously studied from two (or more) inertial frames. In

21

eugen
Highlight

eugen
Highlight

eugen
Highlight

eugen
Highlight

eugen
Highlight

eugen
Highlight



a second sense, that I call “internal,” that phrase means that if we study a

system from the perspective of a certain inertial frame, and we were to boost

both the frame and the system together with respect to the first frame, then

the laws of the boosted system from the perspective of the boosted frame

are the same as the laws of the original system from the perspective of the

original frame (notice that this assumes that the initial conditions, as seen

from the perspective of the frame in which the experiment is conducted,

are the same). It is important to note that when considering the internal

sense, we don’t necessarily need to think of a single system that is boosted.

Instead, we can also examine two instances of the same type of system, such

as two darts from the same batch. For instance, let’s say that at 3:00 pm,

Sara throws a dart with initial conditions C while the train is moving at 100

kph, and at the same time, Carlos throws a dart of the same kind with the

same initial conditions C inside a train moving at 5 kph. According to the

internal interpretation of the phrase in question, both Carlos and Sara will

observe their darts following the same laws of motion, and even the exact

same trajectory. In short, we arrive at these two principles:

External Galilean Relativity Principle (EGRP): A given

mechanical system S1 behaves in an inertial frame K according

to exactly the same laws as the ones it obeys in an inertial frame

K ′ in uniform motion with respect to K.

Internal Relativity Principle (IRP): Take a given mechani-

cal system S1 of type T in an inertial frame K co-moving with it.

Take a second mechanical system S2 of type T uniformly moving
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with respect to S1, and consider an inertial frame K ′ co-moving

with S2. The laws that S1 obeys according to K are exactly the

same laws as the ones S2 obeys according to K ′.4

Wemight think that it is rather obvious that the relativity principle is the

one corresponding to the internal version (IGRP) in this classification. IGRP

does seem to be the one alluded to in Galileo’s passage (with the caveats

mentioned then), the one mentioned by Newton in Corollary V, and the one

Feynman presented with the spaceship example discussed earlier. IGRP is

also the one presented by philosophers of physics such as Brown 2005 and

Norton 2008. However, not all physicists agree. For example, Moataz [2021,

p. 105] defines the Galilean relativity principle in the following way: “Any

two observers moving at constant speed and direction with respect to one

another will obtain the same results for all physical experiments,” and then

goes on to clarify that the observers will disagree about properties such as the

velocity, which can only happen if one is thinking of EGRP [2021, p. 106].

To give another example, consider what Wheeler says here, when illustrating

the principle of what he calls “Galilean relativity”:

Relative uniform motion of the two ships does not affect the laws

of motion in either ship. A ball falling straight down onto one

ship appears from the other ship to follow a parabolic course;

a ball falling straight down onto that second ship also appears

4It is worth pointing out that when saying that S2 is in uniform motion with respect
to S1, this does not exclude the case in which S2 and S1 both have some acceleration in
their corresponding frames. Rather, this just means that for any given instant of time t,
the velocity at that instant in one frame is related to the velocity in the other frame by a
constant factor.
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to follow a parabolic course when observed from the first ship.

[Taylor and Wheeler, 1992, p. 57713]

And finally, consider what Hughes says here:

This [relativity principle] does not mean that observers in all

inertial frames agree on the specific value of an object’s mo-

mentum; indeed, you should be able to convince yourself that

you can make that object’s momentum take any value at all by

changing frames of reference. However, all observers agree that

if that body interacts with another body, then the momenta of

the two bodies after their interaction is the same as it was before.

[Hughes, nd, p. 7]

Notice that in all these passages, the physicists point out that the actual

trajectories of the bodies will look different in the different frames, which

only happens in the external interpretation of the relativity principle. Thus,

some physicists do indeed explicitly define the relativity principle through

the lenses of EGRP.

The natural question to consider now is what the connection between the

internal and the external interpretation exactly is. A clue towards the answer

lies in the attempted derivation by Feynman that we saw earlier. If we look

carefully, all the derivation recovers, once we show or prove that the force is

independent of the velocity, is EGRP. In particular, notice that throughout

the derivation there was a single system, and the laws for that system were

being studied from the perspective of two different inertial frames. The

conclusion of the derivation is supposed to be that the form of the laws
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(F = ma or the law of universal gravitation), as seen in a certain inertial

frame, is the same as the form of the laws as seen in a different inertial frame

related to the one by a Galilean boost (i.e., x 7→ x+vt). But if this is all the

derivation achieves, notice that it does not show what would have happened

if the same system were to be boosted together with the frame, which is what

we need to get IGRP. Hence, Feynman and others mistakenly think that

they have derived IGRP (which is the principle Feynman illustrates with the

spaceship example) just from the invariance under Galilean transformations.

Say, then, that we have successfully derived EGRP along the lines dis-

cussed in the previous section (which includes assuming or proving that the

force is independent of the velocity). How can we go now from EGRP to

IGRP? It turns out that this is not hard given the assumption that the

force is independent of the velocity. Say that we have already shown that

the system obeys the same laws in two inertial frames related by a Galilean

boost, say R1 and R2 (this was the point of the previous derivation). Cru-

cially, this result should be preserved even if the system (or a copy of it) is

boosted because (a) the forces and masses are assumed to not depend on

the velocity and (b) the accelerations are invariant under Galilean transfor-

mations (as Feynman shows). Hence, consider a boost of the system of the

very same magnitude and direction as the boost that takes us from frame

R1 to frame R2. The boosted system will obey the same laws in both sys-

tems (this follows from the derivation of IGRP), but in addition to this, the

relative motion of the boosted system with respect to R2 will be just the

same as the relative motion of the non-boosted system with respect to R1

(if we boost the system together with the observer, then the relative motion
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of the system with respect to the observer will be preserved). In short, then,

we can move from EGRP to the IGRP simply by boosting the system with

the same velocity that maps a frame R1 into a frame R2. It seems, then,

that the same assumptions appealed to when deriving EGRP can take us

all the way to IGRP. Although tightly related, the principles are logically

independent from one another. In particular, one cannot derive EGRP from

IGRP (although one can derive IGRP from EGRP, as we just did). This

will be clear in the next section.

4 Explanation and invariance

Go back to the example of Sara throwing a dart inside the train. Why is

it that the dart behaves in the same way when the train is parked, and

when it has uniform motion? We can answer, of course, that this is a

consequence of the relativity principle. But suppose we believe that this

kind of explanation is dubious (perhaps we regard the relativity principle to

be a consequence of the laws, or we simply think that the question is seeking

a causal answer). Suppose, in particular, that we want to give an answer

that directly appeals to the dynamical laws of the dart. How can we answer

in that case? A standard approach consists of showing that the laws for the

dart are invariant under boosts. In particular, as it flies, the dart satisfies

the equation d2

dt2
y = g along the vertical axis (constant acceleration), and

d2

dt2
x = 0 in the horizontal axis (no acceleration). It becomes an elementary

mathematical exercise to show that neither of these equations changes under

the boost transformation x 7→ x − vt. Mathematically, this shows that the
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transformation is a symmetry of these differential equations. Physically,

this is taken to represent the fact that the dart will behave in the same way

regardless of any changes in its horizontal velocity (or, if one interprets the

boost passively, regardless of changes in the uniform motion of the frame

along the horizontal direction). So the invariance of the dart’s dynamical

laws under boosts explains why the dart behaves the same way when the

train is stationary and when it is moving uniformly. Similarly, the invariance

of the dart’s dynamical laws under spatial shifts, such as x 7→ x − d (with

d constant) explains why the dart behaves the same way when the train

is parked at the first station, and when it is parked in the second one.

And, more generally, the invariance of the dart’s dynamical laws under a

transformation T explains why the dart’s behavior is the same when its state

is transformed according to T (or, in the passive case, when the frame itself is

transformed by T ). The idea that dynamical symmetries (transformations

that preserve the form of the dynamical equations) play a crucial role in

these kinds of explanations seems to be central in both the physics and

philosophical literature (e.g., Wallace [2022]).

Consider, now, a more complex mechanical system such as the vibration

of the strings of a guitar that Sara is playing on the train. The dynamical

equation for the waves in the strings is

∂2y

∂t2
=

T

µ

∂2y

∂x2
, (2)

where T is the tension, µ the density in the string, t time x the horizontal

displacement and y the vertical displacement. Why is it that the waves
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behave in the same way (e.g., form the same oscillations, produce the same

sounds, etc) when the guitar is played at the train’s first station and when

played at the second one? Well, we can proceed as we did before, namely,

we can check that the equation is invariant under x 7→ x − d (to do so,

we need to use the chain rule in order to show that the partial derivative

operator with respect to x does not change, that is, ∂
∂x = ∂

∂x′ ). So far so

good. But now ask: Why is it that the waves behave in the same way when

the guitar is played at the train’s first station and when played as the train

is moving with uniform speed with respect to the station? Once again, we

can try to check that x 7→ x− vt leaves the equation invariant, but it turns

out that this is not true. Instead, if we were to apply such transformation,

the equation becomes:

∂2y

∂t′2
+ 2v

∂2y

∂x′∂t′
+

(
v2 − T

µ

)
∂2y

∂x′2
= 0. (3)

The solutions to this equation are much more complex than the ones for

equation 2 (unless v = 0, in which case the equations are the same). But we

do not need to explicitly discuss the solutions here. The important point is

that, unlike the equations for the dart, the one for a classical wave is not

invariant under Galilean boosts.

Of course, it is well-known that the failure of invariance of electromag-

netic waves under Galilean boosts was a major concern in physics during

the second part of the 19th century, and a major source of inspiration for

Einstein’s development of special relativity (see Buchwald and Fox [2014,

ch. 26]). Here, however, we are talking of a classical system, a simple string
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attached to two fixed points on a guitar. Isn’t it precisely a signature of clas-

sical systems that they remain invariant under Galilean transformations? At

this point, the reader might be thinking something along the following lines:

the lack of invariance, in this case, is simply a consequence of the fact that

the equation assumes a certain frame, namely, a frame in which the strings

remain at rest when not vibrating. A similar thing happens with sound

waves; the equation in that case assumes a frame in which the air molecules

are initially at rest, and the waves are modeled precisely with respect to that

frame. If we were to boost the object emitting the sound with respect to

that rest frame, or if we were to boost the air molecules (say with a sophis-

ticated air tunnel), then the sound emitted by an object would no longer

satisfy the standard wave equation but a more complex one. Indeed, this

is precisely the same reason that led many physicists, including Maxwell

himself, to posit that electromagnetic waves ought to be understood with

respect to a special medium such as the ether. This is why many believed

that if the Earth was moving with respect to such a medium, we would have

expected the light to behave a bit differently as the Earth was orbiting the

Sun.

The previous explanation amounts to this: the failure of equation 2 to

remain invariant under Galilean boosts is a sign that the equation implicitly

(or explicitly) presupposes a specific “rest frame,” namely, the frame in

which the medium of propagation for the wave is at rest. I agree with

that diagnosis. However, I believe that its implications have not been fully

appreciated in the literature for at least five reasons.

First, the lack of invariance under boosts for mechanical waves illustrates
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that not all inertial systems are equivalent when it comes to the description

of mechanical systems, contrary to what is usually said in textbooks and

classes. When objects are in free fall, sliding over a surface, or interacting

gravitationally, the choice of an inertial system does not affect the form nor

the simplicity of the law-equations. But a frame that is initially at rest with

respect to the system producing mechanical waves does produce a simpler

law compared to the law that would be obtained if we were to choose a

frame that is moving relative to the medium (i.e., the equations for waves

in a frame in motion with respect to the medium are much more difficult

to solve). And this point is not just restricted to waves in strings but is a

very generic feature of mechanical systems whose equations involve certain

kinds of partial differential equations; the propagation of heat on a rod, the

oscillation of a spring around an equilibrium point, and even the motion of

a body in a central potential (where the potential is considered to be at rest

in the origin). In all of these cases, the specific laws for the systems involve

differential equations that fail to be invariant under boost transformations

(Belot [2013] offers a detailed discussion of such cases). For example, it is

easy to show that x = −ω2x′′, the equation of a classical harmonic oscillator,

is not invariant under x 7→ x+ vt. This entails that the motion of a spring

with respect to a moving frame is no longer described by a purely harmonic

function, such as x(t) = A cos(ωt), but rather involves additional linear

terms of the form vt. The reason is that the boost of the frame (or of the

spring itself, in the active case) makes the spring no longer oscillate around

the same equilibrium point, which is precisely what we take springs to do

(for a detailed discussion of this case, see Murgueitio Ramı́rez [2022]). The
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world of mechanical systems is full of examples of phenomena whose specific

laws privilege the use of some inertial systems above others, and so it is full

of systems whose specific laws are not manifestly Galilean invariant (even

though they are typically invariant under purely spatial translations).

Second, and related to the prior point, there can be cases in which the

more general laws for a system are invariant under boosts even though the

specific laws are not. For example, by dividing (in our minds!) the string

into very small segments, one can derive the wave equation for the string

by using both F = ma and the assumption that the tension is constant

throughout the string. Crucially, such tension does not depend on the ve-

locity of the string itself with respect to an external system (otherwise we

would have to keep into account the velocity of the Earth when modeling

drum waves in an acoustic lab!). Hence, neither the forces on the string

nor the string’s acceleration depends on the string’s velocity with respect to

an external system. Yet the specific law equation at which we arrive does

depend on such a velocity, as the difference between equation 2 and equa-

tion 3 highlights. This is significant because it shows that two observers in

different states of relative motion will agree about the relationship between

the tension on a segment in the string and the acceleration of that segment,

but disagree about the way such a segment actually behaves (they will use

different differential equations for the motion of the same segment). This is

why, when discussing the relativity principle, one must be careful to distin-

guish between very general laws such as F = ma and the more specific laws

that can be derived from these.

Third, the failure of invariance for some mechanical systems under boosts
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entails that those systems do not satisfy EGRP; their specific laws, when

seen from different inertial frames, are not the same. For instance, as the

(transparent!) train passes by, a camera in the train station will see the

vibrations in Sara’s guitar to obey a different differential equation than the

camera inside the train’s cabin. Similarly, had Sara hung a pendulum from

the roof of the train cabin, the camera inside would have seen the mass

of the pendulum behave according to a different differential equation than

the camera outside (and this would not have happened had we considered

a pure spatial translation). Notice that these are not simply cases where

the particular motion of the object looks different, such as differences in the

horizontal velocity of the dart’s motion when comparing the movie of the

external camera with the movie of the internal one. Rather, these are cases

where the dynamical laws of the systems themselves (as represented by the

differential equations physicists use to model these systems) are different.

And so these are cases where EGRP is not satisfied.

Fourth, notice that mechanical systems can satisfy IGRP even if they do

not satisfy EGRP, which means that one cannot derive EGRP from IGRP

(EGRP is stronger). The camera inside the cabin will see the waves in the

guitar strings look just the same when the train is parked and when it is

moving. And so, in particular, the specific laws that we can derive from

the movie recorded by such a camera will be exactly the same in the parked

train and the moving train (we will recover the same differential equations

in this case). This is just a different instance of the fact that we can use

the same wave equation to model all kinds of mechanical waves even though

the Earth has different velocities as it orbits the Sun. All this is to say that
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the string does satisfy IGRP even though it fails to satisfy EGRP. This is a

way of proving that these principles are not equivalent, as the satisfaction

of IGRP does not guarantee the satisfaction of EGRP.

Fifth, and finally, if a system can satisfy IGRP without satisfying EGRP,

it follows that there is a deep problem with the kinds of explanations that

we encountered at the beginning of the current section. Those explanations

appealed to the invariance of the dynamical laws to answer why the system

behaves in the same way after various transformations. Indeed, this is ex-

actly the explanation we gave for why spatial translations of the wave do

not change the wave’s behavior (recall that we appealed to the fact that the

wave equation is invariant under x 7→ x− d in order to explain this). How-

ever, the wave equation does not remain unchanged under Galilean boosts,

despite the fact that these waves fulfill IGRP. This takes us back to the

initial question that we raised at the start of this essay: If the classical wave

equation is not invariant under constant changes in velocity, what explains

why the guitar produces the same sounds when the train is parked and when

it is moving at 350 kph? Why, in other words, does the guitar obey IGRP

if it does not obey EGRP? This is the question that I want to answer in the

next section.
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5 Some implications of the EGRP vs IGRP dis-

tinction

5.1 Internal vs External Laws

I believe that the key to explaining why the string waves behave in the

same way inside the cabin when the train is boosted is actually simple;

when we boost a system together with an observer, then the motion of the

system with respect to the observer is preserved. In more detail, say that

x1(t) is the motion of a system with respect to a frame R1, and x2(t) is the

motion of the observer (it can be a detector or an agent) with respect to that

same frame. The behavior of the system with respect to the observer will be

captured by the relative motion of the two objects, that is, by z(t) = x1(t)−

x2(t). Then, say that we boost the frame. Such a boost will change the

position coordinates of all objects through r 7→ r+vt. However, the relative

motions will be preserved: z′(t) = (x1(t)+ vt)− (x2(t)+ vt) = x1(t)−x2(t).

Crucially, the exact same reasoning would work in the active case, except

that now we imagine the boost as giving the systems (not the frame) an

additional velocity of vt. That is, the boost of the systems will preserve

the relative motion among such systems just as a boost of the frame does.

The preservation of that relative motion (as a function of time) is all that is

required to recover the kind of fact that we wanted to explain, namely, the

fact that boosting the train does not change how the string behaves inside

the cabin.

Notice that in the prior explanation, we did not say anything about the
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dynamical laws of the target system or the observer. The laws, of course,

allow us to recover the particular motions, but once we have these motions

we do not need to go back to consider the laws. We also do not need to

consider whether the dynamical laws themselves are invariant or not under

boosts. As the case of the waves illustrates, the invariance of the system’s

laws with respect to an external system is not essential to the explanation

in question. We actually did not even need to appeal to waves to make this

point. Take, once again, the dart. Why is it that its motion is the same with

respect to Sara when the train moves and when it is parked? The answer

is not, as we said before, that the laws for the dart have certain symmetries

(such as invariance under spatial translation). Rather, the answer is much

simpler; the relative motion of the dart with respect to Sara, as given by

z(t) = x1(t)− x2(t), is preserved by boosts. The answer, in particular, does

not need to appeal to the invariance of the differential equations for the

dart’s laws. Notice, for example, that if we were to consider an acceleration

of the frame in a straight line, such an acceleration would not preserve

the dynamical laws for the dart. In such a case, we would have to add

a fictional force to account for the apparent acceleration of the dart (and

Sara) with respect to the accelerating frame. In other words, the dart’s laws

are not invariant under constant accelerations. And yet, note that such an

acceleration would also preserve z(t) = x1(t)− x2(t) because the very same

acceleration affects both Sara and the dart (as seen from the frame) and

so it will be canceled out when subtracting the position of both. The same

is true in the active case, as long as the accelerations are the same for all

objects (as in the case of a uniform gravitational field). So, once again,
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this simple example illustrates that the dynamical laws of a system might

fail to be invariant under a certain transformation (a boost, or a constant

acceleration) even though such a transformation preserves all of the internal

relative motions.

The previous discussion thus motivates a distinction between “internal

laws” and the “external laws.” The former concerns the behavior of the

system as seen from the perspective of a co-moving reference system (which

is transformed together with the target system), such as Sara in the cabin.

The latter concerns the behavior of the system as seen from the perspective

of an external frame, such as someone standing in the station (which is

not transformed together with the target system). Using this terminology,

we can then say that a given transformation might be a symmetry of the

internal laws but fail to be a symmetry of the “external laws,” as boosts of

the wave illustrate. Notice that if a certain transformation is a symmetry

of the external laws for a system, then the system satisfies EGRP . And if a

certain transformation is a symmetry of the internal laws, then the system

satisfies IGRP . One and the same transformation can be a symmetry in the

internal sense and yet fail to be a symmetry in the external sense. This is

another way of showing that a system can satisfy IGRP even when it does

not satisfy EGRP , and so a way of showing that the explanation of why

a system satisfies IGRP should not depend on EGRP . The explanation,

rather, seems to appeal to the simple fact that transformations of all the

objects in a certain enclosed system along a straight line will preserve the

relative degrees of freedom of the various subsystems.
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5.2 Conserved quantities and the external perspective

As explained above, one must adopt something like the internal perspective

if we want to understand why boosting certain mechanical systems does not

affect their behavior as seen from a frame that is also boosted. For some

explanations, however, one must adopt the external perspective. In par-

ticular, the external perspective is more adequate when considering certain

physically significant facts about symmetries. For example, consider one

of the most important facts that we learn in introductory physics classes

about symmetries; that, due to Noether’s first theorem, there is an interest-

ing connection between symmetries and conserved quantities. For instance,

if a system remains invariant under constant spatial translations, then its

linear momentum remains conserved. Say that we have a detector inside a

spaceship that measures the linear momentum of objects, and we shift the

spaceship by a constant amount with respect to an external system. If we

repeat the same experiments with the same initial conditions, the detector

will indicate the same readings for the momentum of objects inside the ship.

This example (which describes things from an internal perspective) appears

to show that linear momentum is conserved by spatial translations. However,

it is a misleading demonstration. If we were to boost the spaceship (and all

items inside), and use the same device (also boosted), we would still obtain

the same linear momentum measurements for all objects within the cabin.

Despite this, linear momentum is not the quantity that is conserved by

boost transformations according to Noether’s first theorem. Spatial trans-

lations, boosts, and any non-rotational transformation that acts on all the
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objects in the same way (including the measurement device) will preserve

the linear momentum readings inside the ship.5 Hence, the internal perspec-

tive (in which both the observer and the system are transformed together)

obscures the connection between the conservation of certain quantities and

symmetry transformations. From the internal perspective, it seems as if the

conservation of linear momentum was trivial, easily obtained from all sorts

of transformations!

The lessons of Noether’s first theorem are recovered, not by the internal

perspective but by the external one. The theorem does not entail that the

momentum measured inside the ship at rest and in uniform motion is the

same, given the same system and initial conditions. Rather, it entails that

two external observers looking at the same system from different locations

will agree on the linear momentum of the objects. If one observer is moving

faster than the other, they will disagree on the velocities and momentum of

the system (i.e., the momentum is not conserved in such a case). This is

precisely why there is an interesting connection between spatial shifts and

linear momentum and not between boosts and linear momentum. In the

case of boosted frames, Noether’s first theorem entails that the observers

will agree, not on the value of the linear momentum, but on the value of the

quantity xCM − vCM t, where xCM is the center of mass of the system, v the

velocity associated with the boost and t time. This property may not be

immediately intuitive (it has to do with the uniform motion of the center of

mass of an isolated system), but it is conserved and simply not measurable

5This includes time-dependent accelerations, as long as they act on all the bodies in the
same way, as it happens in a sufficiently uniform gravitational field. This can be thought
of as a consequence of Corollary VI Newton [1999].
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from an internal perspective.

5.3 Connection to other debates

In recent years, philosophers have tended to emphasize that symmetries

preserve appearances (i.e., Ismael and van Fraassen [2003], Saunders [2003],

Baker [2010], Dasgupta [2016]). As far as I can tell, they seem to be adopt-

ing an internal perspective, as they are usually considering cases where ev-

erything, the system, and the observer included, are transformed in some

way (as in the Leibniz Clark correspondence, where we shift all the matter

certain distance in a given direction). However, as the simple example of

the spaceship shows, it is often the case that physics practice requires the

adoption of an external perspective. In such cases, only certain aspects of

the “appearances” are preserved, as a symmetry transformation will disrupt

observable properties such as the distance or the velocity between the sys-

tem and the external observer. Furthermore, as the case of the waves in

the string illustrates, some transformations such as boosts of the frame do

not preserve the form of the law of certain mechanical systems, and so do

not count as dynamical symmetries of such systems. And yet, if we were

to consider those transformations in conjunction with a boost of the ob-

server or frame, we would get the result that the internal appearances are

indeed preserved (i.e., IGRP would be satisfied even if EGRP would not).

This suggests that the link between symmetries and appearances is weaker

than what has been suggested in the recent philosophical literature because

non-symmetry transformations can also preserve appearances (for further

discussion, see Murgueitio Ramı́rez [2022]).
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For similar reasons as with the case of the relationship between symme-

tries and appearances, I think that another recent debate on the philosophy

of symmetries has conflated external laws and internal ones. For example,

Belot [2013] has argued that many symmetry transformations do not pre-

serve the physical state of a system, including symmetry transformations

of mechanical waves (up until this point we showed something else, namely,

that boosts are not symmetries of mechanical waves). I believe that many of

the transformations that Belot discusses ought to be understood externally,

that is, as changing the external physical state (the state as seen from an

external frame). The examples are certainly interesting, but they do not

suffice to establish that the states of the corresponding systems do change if

one were to transform both the system and the frame (as in the case where

we transform the wave and the frame). This highlights that there might

be a way of (but it is not guaranteed) reconciling these examples with the

internal perspective, which is the one I think many philosophers adopt when

thinking of symmetries as preserving physical states.
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