
The Time in Thermal Time

Abstract
Quantizing gravity in the Hamiltonian approach leads to the ‘problem of time,’ rendering
the world fundamentally timeless. One proposed solution is the ’thermal time hypothesis,’
which defines time in terms of states representing systems in thermal equilibrium. On
this view, time emerges thermodynamically, with time being defined by systems in
thermal equilibrium, even in a fundamentally timeless context. Here, I raise the worry
that the thermal time hypothesis requires dynamics – and hence time – to get off the
ground, thereby running into worries of circularity.

1 Preamble: the problem of time

In canonical quantum gravity, we formulate general relativity in Hamiltonian form with the
appropriate constraints and quantize – just as we obtained quantum mechanics from classical
mechanics.1 However, dramatically, the resulting Wheeler-DeWitt equation appears absent of
dynamical evolution. Schematically:

Ĥ|Ψ⟩ = 0 (1)

where Ĥ is the Hamiltonian, and |Ψ⟩ is associated with the wave-functional Ψ representing
both matter content and geometry.

While the usual Schrödinger equation

Ĥ|Ψ⟩ = iℏ
∂|Ψ⟩
∂t

(2)

describes a wave-function |Ψ⟩’s time-evolution, the Wheeler-DeWitt equation – its quantum
gravity analogue – does not. Assuming this equation describes the fundamental state of
affairs, the fundamental ontology contains no reference to time. Yet, our familiar physical
systems are manifestly evolving in time. This is the problem of recovering time-evolution
from fundamentally timeless ontology: the problem of time.2

1There is a literature surrounding whether this is the right approach to quantization (e.g. Pitts (2014), Pooley
& Wallace (2022)); I won’t pursue this discussion here and will assume the standard Dirac quantization approach
is correct.

2See Kuchar (1991), Isham (1993), Kuchar (2011), Anderson (2017), or Thébault (2021).



There have been many attempts to solve, resolve, or dissolve the problem. Here, I’ll assess
one: the thermal time hypothesis (TTH) from Connes & Rovelli (1994). In their words:

A radical solution to this problem [...of this absence of a fundamental physical
time at the ... generally covariant level...] is based on the idea that one can extend
the notion of time flow to generally covariant theories, but this flow depends on
the thermal state of the system ... provided that:

1. we interpret the time flow as a one-parameter group of automorphisms of
the observable algebra...

2. ascribe the temporal properties of the flow to thermodynamical causes, and
therefore we tie the definition of time to thermodynamics and...

3. take seriously the idea that in a generally covariant context the notion of
time is not state-independent, as in non-relativistic physics, but rather depends
on the state in which the system is in. (Connes & Rovelli 1994, 2901, emphasis
mine)

I take these to be core tenets of TTH: despite the problem of time and timeless context, time
emerges due to thermodynamic origins. If we can find systems in special thermodynamic
states within the fundamentally timeless ontology – Kubo-Martin-Schwinger (KMS) thermal
states – then the proposal comes in three parts: first, we use these states to define a privileged
one-parameter automorphism group given a certain algebraic structure, second, we interpret
this parameter as a bona fide time parameter, and third, we explain this in terms of
thermodynamic considerations.3

Prima facie, TTH elegantly resolves the problem of time. It’s commonly accepted that
systems are in thermal equilibrium if certain thermodynamic parameters are unchanging over
time, but TTH reverses this observation by proposing that the time parameter is defined by
systems in states of thermal equilibrium (thermal states) – states satisfying the KMS condition.
Furthermore, every state of interest is supposed to uniquely pick out some such parameter. As
long as we find systems in thermal states in a timeless world, we can recover (thermal) time.

To my knowledge, philosophers have not dedicated much attention to TTH beyond
Swanson (2014 ch. 5, and 2021). Furthermore, while Swanson (2021) focuses largely on
technical issues with TTH, I want to emphasize a core conceptual issue. I thus aim to
complement Swanson’s discussion and generate more interest in TTH as a solution to the
problem of time, and more generally, the nature of the problem of time itself.

3Rovelli (personal correspondence) distances himself from this stronger hypothesis, suggesting that it
merely provides analysis of ‘timely’ notions associated with thermodynamics, but doesn’t define time using
thermodynamics. Importantly, he claims that TTH already assumes that some notion of time (perhaps relational
clocks) is definable. This weaker TTH avoids the conceptual problems I’ll raise. However, it’s contrary to a
natural reading of the above passage. I’ll set this weaker TTH aside – it already assumes some (presently absent)
resolution of the problem of time by assuming that time can be defined.
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Overall, I’ll argue that TTH is unsatisfactory as a solution to the problem of time: it’s
either circular or remains yet unjustified in its derivation of time from thermodynamics. The
general worry is this: a dynamical interpretation for the modular group associated with KMS
states is not guaranteed. Pinning down a dynamical interpretation requires background
considerations about dynamics, and hence time.

I’ll press my concern through three perspectives with which one might try to pin down a
dynamical interpretation: classical thermodynamics, Rovelli’s (1993) proposed ‘intrinsic’
thermodynamics, and via considerations about the algebraic structure itself. From the first
perspective, equilibrium is intrinscally tied up with the concept of time. The second
perspective seeks to remedy this by defining equilibrium in terms of concepts not obviously
tied up with time. I’ll argue that this proposed definition – of ‘intrinsic’ equilibrium – is
classically motivated by time-scale and dynamical considerations; furthermore, free from such
considerations, the definition is neither necessary nor sufficient for thermal equilibrium.
Finally, I’ll argue that the modular group itself does not necessitate – and in fact, does not
generally have – a dynamical interpretation. In the cases where it does, it is justified by
background considerations which appeal to time, dynamics, or spacetime.

In short, it seems that TTH doesn’t take off without concepts to do with time, thus
interpreted. If we already have time in the background, though, then we’ve already stipulated
the existence of a solution to the problem of time – the existence of some background
dynamical parameter – sans TTH. Either TTH does not take off, or it’s assuming the very
thing it intended to deliver and is hence redundant.

2 The time from thermal time

2.1 The Heisenberg picture

While not necessary, TTH finds its most natural setting when viewed through the Heisenberg
picture of quantum mechanics because of its focus on an operator-algebraic approach.4 In
standard physics, the Heisenberg picture takes states |Ψ⟩ in Hilbert spaceH to be
time-independent. What evolves unitarily over time – and are of interest – are the
time-dependent observables O – representing possible measurement outcomes of physical
quantities one might make on systems – which are represented by self-adjoint linear
operators A ∈ A acting onH.5 However, the physical interpretation of A is similar to those
in the Schrödinger picture: they are the possible physical quantities attributable to systems at

4The C∗ algebraic approach does not itself depend on any particular picture of quantum mechanics, though
Connes & Rovelli (1994, 2901) emphasizes that TTH is to be interpreted in terms of a generalized Heisenberg
picture.

5More specifically, A has the structure of B(H), that is, the algebraic structure of bounded linear operators
acting onH.
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a time (or at some spacetime region).6
A evolves unitarily according to the Heisenberg equation of motion:

∂A

∂t
=
i

ℏ
[H,A] (3)

and:
A(t) = U †(t)A(0)U(t) (4)

where U(t) = e−iHt/ℏ is the unitary operator, [·, ·] is the commutator defined as
[A,B] = AB −BA, and H is the Hamiltonian.

2.2 C∗ algebra: from abstract to concrete

The Heisenberg picture lends naturally to an algebraic interpretation of quantum mechanics.
The structure of how A acts onH can be understood using abstract algebra: it’s a
non-commutative C∗ algebra, specifically, a von Neumann algebra.7 Furthermore, this abstract
algebraic structure of C∗ algebras can be represented in terms of corresponding concrete C∗

algebras via the familiar Hilbert space structure.
Given an abstract C∗ algebra C,8 one can define states ω over C: positive normalized linear

functionals such that
ω : C → C (5)

Since it’s normalized, positive, linear, and real-valued on self-adjoint elements, a natural
interpretation of ω(C) is to understand it as assigning expectation values to the physical
quantities A – the elements of C – in state ω.

Now we connect these abstract notions to concrete physics: this means finding counterparts
inH to the algebraic structure and states via representations. Notably, for each ω on C, the
Gelfand-Naimark-Segal (GNS) construction provides a representation πω(C) of C in some

6Rovelli & Smerlak (2011, 6) suggests that “in quantum gravity the pure states can be given by the solutions
of the Wheeler-DeWitt equation, and observables by self-adjoint operators on a Hilbert space defined by these
solutions." That is, the observables of interest in quantum gravity might be a global algebra of observables across
spacetime. Crucially, such Hilbert spaces (and global algebras) remain elusive.

7For technical exposition, see Bratteli & Robinson (1987 and 1997). For exposition targeted at philosophical
audiences, see Ruetsche (2011a, Ch. 4).

8An abstract C∗ algebra is a set C of elements – such as the observables we’re interested in – which satisfies
various formal properties: it’s closed under addition, scalar multiplication, (non-commutative) operator
multiplication, involution operation ∗, and equipped with a norm || || satisfying ||A∗A|| = ||A||2 and
||AB|| ≤ ||A|| ||B|| for all A,B ∈ C.
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Hilbert space Hω .9 Within Hω , we find a cyclic and separating vector |Ψω⟩ ∈ Hω such that:10

ω(A) = ⟨Ψω|π(A)|Ψω⟩ (6)

In Ruetsche’s words, “the expectation value the state ω assigns the algebraic element A is
duplicated by the expectation value the vector |Ψω⟩ assigns to the Hilbert space operator
π(A)". (2011a, 92) This shows that every abstract ω has concrete counterparts as vectors in
some Hilbert space given by the GNS representation. Furthermore, one can always find states
guaranteeing a faithful representation; these are faithful states.11 Roughly, faithful
representations preserve abstract algebraic structure in concrete settings.12

These results establish correspondence between the abstract states and algebraic structure
of C and concrete representations in terms of bounded linear operators A acting onH, i.e.
B(H). In other words, the existence of faithful representations (via the GNS construction)
associated with faithful states guarantees that any abstract C∗-algebra is isomorphic to a
concrete C∗-algebra. For the remainder of this paper, I’ll furthermore focus on concrete von
Neumann algebras W per Connes & Rovelli,13 which allows us to use the tools from modular
theory (which depend on the structure ofW).

Connes & Rovelli also restricts attention to normal states: states on some givenW which
also satisfy countable additivity. Normal states are represented as density operators ρ with
Tr(ρ) = 1 inH:

ω(A) = Tr(ρA) (7)

for all A ∈ W . This restriction is likely motivated by a demand that the algebraic formalism
be given clear physical meaning.14 After all, (7) recovers the standard way of deriving

9A representation is a ∗-homomorphism π : D → B(H) where D is some abstract algebra, and B(H) is the
set of bounded linear operators on H.

10A vector |Ψ⟩ ∈ H is cyclic for C just in caseW|Ψ⟩ is dense inH. |Ψ⟩ ∈ H is said to be separating for C just
in case A|Ψ⟩ = 0 implies A = 0 for any A ∈ C.

11I assume that this restriction to faithful states is unproblematic, following Connes & Rovelli (1994). See
Feintzeig (2023, §2.3) for discussion. Swanson (2021, 286) notes that nontrivial C∗ algebras have no pure faithful
states, and worries that TTH might thereby require some ignorance interpretation of mixed states. However,
Wallace (2012) argues that mixed states needn’t demand such interpretations. See also Chen’s (2021) density
matrix realism, which is a realist picture of quantum mechanics employing mixed states without assuming that
such mixed states represent ignorance.

12More specifically, faithful states ensure π is a ∗−homomorphism to a subset of bounded operators on H, i.e.
that π is a faithful representation. Faithful states satisfy the condition that ω(A∗A) = 0 entails A = 0 for all
A ∈ C.

13These are concrete C∗ algebras closed under the weak operator topology satisfying W = W ′′. For an
algebra D of bounded operators on H, its commutant D′ is the set of all bounded operators onH commuting
with every element of D. If D is an algebra, so is D′. D′′ is the double commutant, the set of all bounded
operators in D′ commuting with D′.

14See Ruetsche (2011b).
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expectation values – observed statistics – of measurements associated with observables A:

⟨A⟩ = Tr(ρA) (8)

2.3 From kinematics to possible dynamics

So far we’ve focused on algebraically representing the kinematics of quantum theory – the
structure of A acting on H and their expectation values – at a time (or spacetime region). But
W also provides something that could be understood as time-evolution, via modular theory.
Crucially, any faithful, normal ω defines a unique one-parameter group of automorphisms of
W :

αω
t : W → W (9)

for real t. Given a concreteW defined by faithful, normal ω via the GNS construction, the
Tomita-Takesaki theory provides a unique αt in terms of two modular invariants generated
from the adjoint conjugation operation ∗. The theory guarantees the existence of a
well-defined operator S:

SA|Ψ⟩ = A∗|Ψ⟩ (10)

and that S has a unique polar decomposition:15

S = J∆1/2 (11)

where J is antiunitary and ∆ is a self-adjoint positive operator. αt, associated with the
defining state ω, is defined by:

αω
t A = ∆itA∆−it (12)

and this uniquely defines a strongly continuous one-parameter unitary group of
automorphisms onW , parametrized by t ∈ R, which is also called the modular group.
Associated with the group is a modular ‘Hamiltonian’ log ∆ which is the generator of the
modular group.16 The modular ‘Hamiltonian’ is introduced in scare-quotes to distinguish it
from the physical Hamiltonian which is the generator of the time-translation group, that is,
the driver of time-evolution via e.g. the Heisenberg equation (4). In general, the two notions
cannot be identified, in which case the associated modular group is not the time-translation
group, but some other arbitrary unitary group. As Schroer puts it, this modular ‘Hamiltonian’
“is always available in the mathematical sense but allows a physical interpretation only in
those rare cases when it coincides with one of the global spacetime generators" (2010a, 114)
and that “modular Hamiltonians give rarely rise to geometric movements (diffeomorphisms)"

15See Takesaki (1970).
16One can see this via Stone’s theorem, which states that every strongly continuous one-parameter unitary

group, Λ(t), is associated with a corresponding (possibly unbounded) generator via eiHt. If t is interpreted as
time, then H is the Hamiltonian.
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(2010b, 306). In other words, the modular ‘Hamiltonian’ does not necessarily have a clear
dynamical role to play – qua physical Hamiltonian driving time-evolution – outside of certain
special circumstances.

Crucially, this means that αω
t can (but need not always!) be given dynamical meaning

because ∆−it can (but need not always!) be interpreted as time-translation operators. In other
words, t isn’t always time. If the physical Hamiltonian – associated with the usual
time-evolution via (4) – can be identified with the modular ‘Hamiltonian’, then (12) is
equivalent to (4). This, of course, is not guaranteed: not all unitary operators implement
time-translation. As Ruetsche (2011) puts it, “every faithful normal state on a von Neumann
algebra satisfies the modular/KMS condition with respect to exactly one flow, although not
necessarily one naturally read as a group of time translations." (164) The crucial step, in
interpreting the modular group defined by any faithful, normal state dynamically, is to
interpret its parameter t as playing the same role as physical time in time-evolution in the usual
Heisenberg equation. (More on this in §3.2.)

However, even if we can interpret αω
t dynamically, these are very special dynamics: any

faithful, normal state ω is invariant under the ‘flow’ of αω
t :

ω(αω
t A) = ω(A) (13)

Interpreted dynamically, αω
t leaves ω unchanged over time. But systems in arbitrary states

need not be unchanging over time; in these cases, the dynamics associated with αω
t doesn’t

describe the dynamics of that system. Put simply: the two notions of dynamics – the
‘dynamics’ of αω

t and the system’s actual dynamics – don’t always ‘align’ and we’re not always
justified to interpret αω

t as the system’s actual dynamics. (More on this in §3.1 and §3.2.)

2.4 Justifying a dynamical interpretation: from thermal states to KMS states

Importantly, there is one clear case when we are physically justified in interpreting αω
t

dynamically: when systems are in thermal states. In such cases, systems are
time-translation-invariant (i.e. stationary) and possess certain thermodynamic properties e.g.
being at constant temperature. In standard physics, these notions are defined via background
time and dynamics. Given the special kind of dynamics associated with such systems –
dynamics which doesn’t change the system’s thermodynamic state over time – the associated
modular group automorphisms αω

t can then be interpreted as the actual dynamics for systems
in such a state. For this special case, the dynamics associated with αω

t seems to ‘align’ with
the dynamics of systems in thermal equilibrium.

When do we know that states ω are thermal? It turns out that one can understand thermal
states (with inverse temperature β, 0 < β <∞) as states satisfying the KMS condition, i.e.
KMS states.17 KMS states satisfy the following conditions: for any A,B ∈ W , there exists a

17β = 1
kbT

, where T is the system’s temperature, and kb is Boltzmann’s constant.
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complex function FA,B(z), analytic in the strip {z ∈ C | 0 < Im z < β} and continuous on
the boundary of the strip, such that for all t ∈ R:

FA,B(t) = ω(αω
t (A)B) (14)

FA,B(t+ iβ) = ω(Bαω
t (A)) (15)

ω(αω
t (A)B) = ω(Bαω

t (A)) (16)

The KMS condition is arcane, but a physical anchor – and one big reason (though not the only
reason) why we can interpret KMS states as thermal states – is the fact that KMS states are
formally equivalent, in the finite-dimensional case, to Gibbs states ρβ . This is the quantum
generalization of statistical states for systems in thermal equilibrium at constant inverse
temperature β with a physical Hamiltonian H :

ρβ =
e−βH

Tr(e−βH)
(17)

For any operator A ∈ A, the expectation value for that observable for this system is:

⟨A⟩ρ = Tr(ρβA) =
Tr(e−βHA)

Tr(e−βH)
(18)

ρβ satisfies the KMS condition. Interpreting ω in terms of ρβ via (18), and αω
t (A) as

eiHtAe−iHt per (4), we get, for operators A,B ∈ W :

Z−1Tr(e−βHeiHtAe−iHtB) = Z−1Tr(e−βHBeiH(t+iβ)Ae−iH(t+iβ)) (19)

where Z = Tr(e−βH) is the partition function of ρβ .18 From (19) we see that ρβ satisfies the
KMS condition (16). Note, again, that we must first justify interpreting αω

t dynamically as the
time-translation group associated with the Heisenberg equation, and not just any arbitrary
unitary group. In this case, since we started with a physical Hamiltonian which plays the
dynamical role in the Heisenberg equation, e.g. by encoding the equations of motion, αω

t can
naturally be interpreted as a time-evolution operator.

For finite-dimensional quantum systems, ρβ uniquely describes systems satisfying the KMS
condition.19 This imbues the purely syntactic KMS condition (as Emch & Liu (2002, 351)
describes it) with physical meaning, motivating the physical equivalence of KMS states and
thermal states: the t in αω

t can be interpreted as the time along which systems stay in thermal
equilibrium. The interpretation of KMS states as thermal states is further motivated by the

18This uses the fact that the Hamiltonian commutes with itself, and that the trace is cyclic.
19See Emch & Liu (2002, 351–352). In infinite-dimensional quantum systems, the trace is ill-defined, and so

ρβ is likewise ill-defined. Crucially, the KMS condition can still hold.
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discovery that KMS states also satisfy various stability and passivity conditions we typically
associate with thermal states, and that these properties hold even in the infinite-dimensional
case (where ρβ is ill-defined).20

Importantly, any ω satisfies the KMS condition relative to the modular group defined by
itself, i.e. αω

t ,21 for β = 1.22 Naïvely, this seems to overgeneralize: any state is a KMS state,
even the state of my cooling coffee. However, the appropriate statement is that any state can
be a KMS state: there are some possible dynamics which keeps a system in thermal
equilibrium. This is just to reiterate that αω

t can but needn’t necessarily be interpreted
dynamically. It needn’t align with a system’s actual dynamics. Furthermore, when they don’t
align, ω will not be a KMS state with respect to the actual dynamics (i.e. it’s not really in
thermal equilibrium). (I’ll elaborate in §3.1.)

Returning to when we can interpret αω
t dynamically, it seems that we’re justified to do so

when we’re justified to interpret a system as being in thermal equilibrium. If we know that
the system’s dynamics – associated with thermal equilibrium – ‘aligns’ with the special
dynamics described by αω

t , or whether the physical Hamiltonian can be identified with the
modular ‘Hamiltonian’, then we can interpret αω

t dynamically. This is the case only in very
special cases, for instance, when we consider immortal uniformly accelerating observers
restricted to the right wedge of Rindler spacetime, where the vacuum state looks like a thermal
state due to the Unruh effect. There, the modular ‘dynamics’ αω

t , and the associated modular
‘Hamiltonian, can be identified with the natural dynamics of such an observer in terms of
Rindler wedge-preserving Lorentz boosts (and the associated physical Hamiltonian).23

2.5 The thermal time hypothesis

So far I’ve introduced everything in a standard quantum mechanical context, where there is
some assumed background time (or spacetime). In the timeless context, however, there’s no
time with which we may determine systems to be in thermal equilibrium, and no
straightforward way to understand the physical meaning of KMS states (and hence interpret
the associated αω

t dynamically).
TTH reverses this situation. Instead of defining thermal equilibrium and KMS states in

terms of time, Connes & Rovelli hypothesizes that we define the modular group parameter to
20ω is invariant under the flow of αω

t ; interpreted as dynamical flow, it captures the idea that equilibrium
states are stationary and don’t change over time. Other examples: such states don’t change in free energy over
time (thermodynamic stability), remain (over time) in arbitrarily close stationary states under small
perturbations (dynamical stability), and are passive under any finitely long local perturbations of its dynamics
(passivity). See Emch & Liu (2002, 355).

21See Bratteli & Robinson (1997).
22Ruetsche (2011a, Ch. 7, fn. 23) notes that states satisfying the KMS condition for β = 1 also satisfy it for

arbitrary β > 0.
23See Earman (2011) or Swanson (2021) for discussion.
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be time using thermal equilibrium. Notably, this implicitly assumes the applicability of the C∗

algebraic structure even in the timeless context.
TTH is motivated by the aforementioned fact that any faithful, normal, state ω defines a

preferred one-parameter group of automorphisms αω
t . If we’re further justified in

interpreting ω as a thermal state ρβ , then we can interpret the dynamics of αω
t as being

generated by a ‘thermal’ physical Hamiltonian H = −lnρβ , a Hamiltonian that describes the
dynamics of a system in thermal equilibrium.24 Crucially, in this case, the physical
Hamiltonian is defined in terms of ρβ , and is definitionally equivalent to the modular
‘Hamiltonian’. This is contrary to the usual understanding where the physical Hamiltonian is
defined and interpreted prior to ρβ , and is used to define ρβ . Given genuine thermal states,
this move is unproblematic and a physical Hamiltonian can indeed be extracted in
non-generally covariant contexts. The further, and more daring, claim of TTH is that we can
do the same thing in generally covariant contexts: start with thermal states, and define a
physical Hamiltonian and the associated time-translation group in terms of the modular
‘Hamiltonian’ and the associated modular group.

To sum up TTH: in the generally covariant context of quantum gravity, where the problem
of time looms, we appeal to the C∗ algebraic structure and hypothesize that the flow of time is
defined by the unique one-parameter state-dependent modular automorphism group αω

t ;
dynamical equations can be defined in terms of this flow (e.g. via the ‘thermal’ Hamiltonian
above). Systems in thermal equilibrium thus define time even in the timeless setting,
providing a path towards tackling the problem of time.

3 The time in thermal time

While the foregoing technical details are daunting, the conceptual point is simple: in standard
quantum mechanics and classical thermodynamics, we always have some background
(space-)time, with which we can define dynamical notions such as equilibrium, time-evolution,
stationarity, etc. In the generally covariant setting we don’t have such a time parameter. But,
if we had access to the structure ofW , then any faithful, normal state ω over W defines αω

t

according to which it’s a KMS state, which comes with an associated unitary group, and an
associated ‘Hamiltonian’. Connes & Rovelli’s proposal is that we first interpret these states ω
as thermal equilibrium states, then interpret their dynamics αω

t as thermal equilibrium
dynamics i.e. the parameter t as time. Time is defined in terms of thermal equilibrium via αω

t .
Swanson (2021) has already pointed out some technical challenges for this program.25 Here,

I emphasize a further conceptual challenge. Essentially, TTH tries to define time in terms of
the modular group of KMS states which can be interpreted as states of thermal equilibrium,
by working with the C∗ algebraic structure. To avoid circularity, and to genuinely tackle the

24For more details, see Paetz (2010, §4.2 and §5.2).
25See also Swanson (2014), Paetz (2010, Ch. 7).
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problem of time, TTH’s basic concepts had better not require interpretation in terms of time
to be physically meaningful to begin with. Otherwise, they only define time insofar as time
has already been defined – a circularity par excellence. However, I’ll argue that three different
perspectives towards the TTH all point to this conceptual worry.

Let me first sketch the core of the worry. For Connes & Rovelli, “an equilibrium state is a
state whose modular automorphism group is the time translation group" for the
non-generally covariant context (1994, 2909), and TTH asserts that this carries over to the
generally covariant context. However, when are we allowed to interpret the modular group as
the time-translation group, as opposed to any other unitary group (e.g. those associated with
spatial translations)?

As I’ve already emphasized, αω
t cannot be interpreted dynamically automatically.

Furthermore, even if it is interpreted dynamically, it is a very special sort of dynamics for the
associated ω. Earman & Ruetsche echo this concern: “the modular group determined by an
arbitrary faithful normal state on a von Neumann algebra may lack a natural dynamical
interpretation, in which case scare quotes should be understood when referring to β as the
inverse temperature." (2005, 570) That is, we’re not entitled to interpret any (faithful normal)
state satisfying the KMS condition as being in thermal equilibrium, or having (equilibrium)
thermodynamic properties, without further justification. Even in non-generally covariant
contexts, αω

t might not align with a system’s actual dynamics, and hence might not be
interpretable dynamically. We need some further physical argument for why systems in some
arbitrary state ought to be interpreted as having the dynamics associated with αω

t – for why
its dynamics ‘aligns’ with αω

t ’s dynamics.
This point was already emphasized by Haag et al (1967), who first connected the KMS

condition to thermodynamic equilibrium:

We assumed the existence of an automorphism A→ At for which ω(A) is
invariant. It then follows that there exists a unitary operator U(t) = e−iHt/ℏ on
H, which implements this automorphism. This does not mean, however, that the
system actually moves according to this automorphism. It only means that it’s
possible to choose the dynamics, i.e. the interparticle forces and the external
forces, such that with these forces the system in the state ω(A) would be in
equilibrium. If the forces happen to be different, the automorphism A→ At is
not a time translation, H is not the Hamiltonian of the system and the state ω(A)
is not stationary. (1967, 235, emphasis mine)

Put another way, we’re justified in taking αω
t seriously as dynamics only when we already

have some prior determination that the system is already in thermal equilibrium. Likewise,
Swanson (2021, 12) points out:

Any statistical state determines thermal dynamics according to which it is a KMS
state, however, if ρ is a non-equilibrium state, the resultant thermal time flow
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does not align with our ordinary conception of time. By the lights of thermal
time, a cube of ice in a cup of hot coffee is an invariant equilibrium state! The
same problem arises in the quantum domain – only for states which are true
equilibrium states will the thermal time correspond to physical time.

In other words, for TTH to take off, it must rule out the fact that any arbitrary faithful, normal
state defines some ‘thermal time’. It must restrict TTH only to the physically meaningful
thermal times defined by a privileged class of states overW , which are ‘really’ equilibrium
states. After all, as I’ve emphasized, genuine thermal states are the only states for which αω

t

aligns with a system’s actual dynamics. But which states are ‘really’ equilibrium states?

3.1 The time in standard thermodynamic accounts of equilibrium

Let me start, briefly, with the standard account of thermodynamic equilibrium. The usual way
(in standard quantum mechanical contexts) of picking out equilibrium states refer to
thermodynamic properties such as stationarity, stability, and passivity. Emch & Liu (2002, 355)
observes that these properties typically requires that the state “is assumed tacitly to be
stationary with respect to a specified dynamics α".26 In other words, bona fide equilibrium
states appear to be defined implicitly in terms of some background time parameter.
More generally, the meaning of ‘equilibrium’ appears intrinsically dependent on time. As

Callen emphasizes: “in all systems there is a tendency to evolve toward states in which the
properties are determined by intrinsic factors and not by previously applied external
influences." These are the equilibrium states, which are “by definition, time independent" (1985,
13) such that “the properties of the system must be independent of the past history" (1985,
14).27 In other words, it seems almost a priori that equilibrium is dependent on some
background time, along which processes evolve, properties cease to change, and states
terminate in quiescence.

Hence, in the timeless context, we cannot simply claim that these equilibrium properties
obtain. Furthermore, if equilibrium is defined in terms of time, and thermal time requires
equilibrium, then thermal time doesn’t solve the problem of time, since it takes time! Any
(faithful, normal) state can be deemed to be an ‘equilibrium’ state with respect to its modular
group’s ‘thermal time’, but this renders the meaning of equilibrium arbitrary. Instead, we need
some story for why a state is ‘really’ in thermal equilibrium. Such a story is typically provided

26See fn. 20 for some of these conditions.
27Other textbooks make similar claims about the temporal nature of equilibrium. Buchdahl (1966) defines

equilibrium via staticity – lack of change over relevant timescales. Landau & Lifshitz (1980) notes how
equilibrium states are states which are necessarily arrived at after some relaxation time. Caratheodory’s (1909)
discussion of equilibrium also focuses on relaxation time. Schroeder (2021, 2) introduces thermal equilibrium as
such: “After two objects have been in contact long enough, we say that they are in thermal equilibrium." Matolcsi
(2004) conceptualizes equilibrium via the standstill property: a process is standstill when they are not varying in
time and have vanishing dynamical quantities.
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with respect to some background time, and it’s unclear how TTH can avoid referring to time
in defining equilibrium.

An immediate response would be to reject standard accounts of thermodynamic
equilibrium. After all, those accounts were developed classically, without the problem of time
in the background. To appeal to those accounts in the new context of the problem of time
seems to be unfair. The question, then, is what notion of thermal equilibrium we should be
appealing to, and what physical reasons we have for thinking that this new notion can
recover our standard notions of thermodynamic equilibrium in domains where we already
have a good grip on thermodynamic equilibrium.

3.2 The time in timeless equilibrium

In response, Paetz (2010, §7.6) suggests that we’d need an intrinsic definition of equilibrium –
one that doesn’t refer to time – if TTH is to succeed. To my knowledge, the only noteworthy
proposal is due to Rovelli (1993).

We can see how Rovelli’s ‘timeless’ definition of equilibrium is supposed to work, by seeing
how it aligns with our standard concept of thermodynamic equilibrium in classical statistical
mechanics. Rovelli (1993, 1559) claims that this condition was emphasized by Landau &
Lifshitz (1980) as a definition of equilibrium.28 For a system S with phase space coordinates p,
q, such that we can separate a small but macroscopic region S ′ in spacetime, with associated
coordinates p′, q′, from the (much larger) rest of the system S ′′ with coordinates p′′, q′′, and
assuming weak interactions between S ′ and S ′′, the interaction Hamiltonian approximately
vanishes. (See Fig. 1.) As a result, for such a choice of S ′ and S ′′, the probability distribution
for the system – its statistical state ρ – factorizes:

ρS(p, q) = ρS′(p′, q′)ρS′′(p′′, q′′) (20)

This condition essentially signals the statistical independence of one sub-system’s statistical
state from the other, and is prima facie free of time. One way to interpret this statistical
independence is as representing a system being in equilibrium with itself by representing its
parts (i.e. subsystems) as being in relative equilibrium with each other. If these subsystems are
in relative equilibrium, their thermodynamic properties will, of course, not change with
respect to each other, and so it seems natural that the subsystem statistical states – which
determine macroscopic quantities – are independent of each other and will factorize. Rovelli
then proposes that this condition defines equilibrium: “we shall refer to equilibrium as a
situation in which every small but still macroscopic component of the system is in
equilibrium, in the usual sense, with the rest of the system." (1993, 1558–1559)

Rovelli’s proposal is supposed to extend beyond the instantaneous phase space of classical
28To my knowledge, Landau & Lifshitz does not use this condition as a definition of equilibrium, but as a

property which (more or less) holds for equilibrium systems.
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Figure 1: A partition of system S into subsystems S ′ and S ′′.

statistical mechanics into generalized phase spaces (compatible with the canonical approach
to quantum gravity) where time is demoted, from a privileged, global, coordinate defining p
and q at a time, to merely one of the many phase space coordinates. However, the idea
remains exactly the same: if we can find systems whose parts are in relative equilibrium with
each other (i.e. systems satisfying the factorizability condition for coordinates p, q), then those
systems are in equilibrium simpliciter. For both classical and generally covariant contexts, this
notion of equilibrium need not be global, i.e. need not hold true of all of phase space: to the
extent that some large regions of phase space factorize per (20), that region can be said to be
in equilibrium. If this works, then even in the globally frozen worlds described by the
Wheeler-DeWitt equation, regions of these worlds can be ascribed thermodynamic
equilibrium states, with which to define a (possibly non-global) thermal time via TTH.

To assess this proposal, let’s precisify Rovelli’s proposed definition. Firstly, a system is in
equilibrium if and only if every subsystem is in relative equilibrium with the rest of the
system, viz. S ′ and S ′′ are in relative equilibrium for all choices of S ′ and S ′′ such that S ′ and
S ′′ are still macroscopic regions and S ′ is significantly smaller than S ′′. Secondly, two
subsystems S ′ and S ′′ are in relative equilibrium if and only if (20) holds.29
Unfortunately, I don’t think that this definition of equilibrium is adequate. To begin with,

the original physical justification for applying (20) appears to rely implicitly on time, even if
its form is explicitly timeless. What Rovelli does not mention is Landau & Lifshitz’s caveat
which immediately precedes (20):

It should be emphasised once more that this property holds only over not too long
intervals of time. Over a sufficiently long interval of time, the effect of interaction
of subsystems, however weak, will ultimately appear. Moreover, it is just this

29Landau & Lifshitz (1980, 7) notes that groups of subsystems also factorize with respect to the rest of the
system in the same way, provided that these groups are still small enough relative to the rest of the system.
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relatively weak interaction which leads finally to the establishment of statistical
equilibrium. (1980, 6, emphasis mine)

In other words, the application of this definition is manifestly justified in terms of background
dynamics, just like other definitions of equilibrium. (20) is clearly not intended to define
equilibrium states. Rather, the subsystems of systems in equilibrium can be justifiably
characterized in terms of (20) for suitable periods of time but not always. Relative to some
timescales, subsystem interactions approximately vanish. Over long enough periods of time,
interactions between subsystems, however small, render (20) false. Macroscopic properties
not changing for subsystems of a system in equilibrium does not mean that their probability
distributions, which depend on microphysical properties, are likewise independent of each
other. For all practical purposes, we may treat (20) as approximately true, since we typically
don’t deal with systems on those time-scales. However, (20) only holds true relative to certain
timescales, and should not be taken to be a definition of equilibrium.

One possible response is to take Landau & Lifshitz’s definition but reject their physical
justification. After all, they are clearly not working in the timeless generally covariant context,
so, prima facie, we should not expect their justification to apply in this new context. Instead,
we should treat (20), the factorization of statistical states, to define equilibrium for a generally
covariant quantum system. Insofar as systems (approximately) factorize this way, we can take
them to be in equilibrium and to define thermal time. We should therefore treat Landau &
Lifshitz’s original physical justification – that systems factorize because they are weakly
interacting subsystems in relative thermal equilibrium – as a consequence of this definition
instead. Because of this definition – because systems approximately factorize in this way – we
can then treat its subsystems as weakly interacting in relative equilibrium with each other.

However, both parts of Rovelli’s proposed definition encounter conceptual worries. Firstly,
defining equilibrium in terms of relative equilibrium for all choices of S ′ and S ′′ is too strong.
While it’s true that a system would be in equilibrium if each subsystem is in such a relative
equilibrium with the rest of the system, I don’t think that the latter is necessary, and hence
cannot be definitional, for equilibrium. Even in the standard non-generally covariant context,
any typical system, even those which we do know to be in equilibrium, will not satisfy the
criterion of relative equilibrium for all choices of subsystems. The only requirement proposed
by Rovelli is that S ′ and S ′′ are macroscopic subsystems, and that S ′ is much smaller than S ′′.
Landau & Lifshitz (1980, 7) notes that the same relation holds for groups of subsystems so
long as the group remains small relative to the rest of the system. However, without further
constraints, there are always going to be gerrymandered ‘Maxwell’s demon’ partitions of the
system into two subsystems:30 a small disconnected collection of subsystems containing all
and only the faster particles with higher momentum, Sfast, and a much larger region of the

30This need not be an actual partition (using walls, membranes, etc.), and so sidesteps the question of
whether Maxwell’s demon is physically realizable.
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Figure 2: A schematic demonic partition of system S into two subsystems S ′, S ′′, where S ′ is
a composite subsystem of higher mean kinetic energy, and S ′′ is a subsystem of lower mean
kinetic energy.

system containing all and only the slower particles with lower momentum Sslow.31 (See Fig.
2.) It seems to me that nothing rules out the possibility of partitioning the system this way. It
then follows that Sfast is at a much higher temperature than Sslow since the former has higher
mean kinetic energy. So it seems that relative equilibrium doesn’t obtain for such a partition
of subsystems, even though we know that the system is in equilibrium overall.

One reply to the demonic partition is to rule out disconnected subsystems. A revised
definition of the first part of Rovelli’s definition becomes: S ′ and S ′′ are in relative
equilibrium for all choices of S ′ and S ′′ such that S ′ and S ′′ are still macroscopic regions, S ′ is
significantly smaller than S ′′, and S ′ and S ′′ are each connected systems. This rules out (2) as
an example, since S ′ was a collection of disconnected subsystems. But this move does not
exorcise the demon entirely, only the more visceral cases I raised above. Consider a new
demonic scenario where S ′ is a connected but highly gerrymandered subsystem which
contains all of the high momentum particles but none of the lower momentum particles. (One
can imagine this partition ‘weaving’ through the space between particles to avoid just those
lower momentum particles. See Fig. 3.) On the contrary, S ′′ contains only the lower
momentum particles. The same problem arises as before: the two subsystems are not in
relative equilibrium yet the total system is in equilibrium ex hypothesi. So a demand of
connectability would not resolve the worry I’ve just raised above.

Secondly, there’s a worry about whether mere statistical independence, i.e. (20) – the
factorization condition – suffices to track whether two subsystems are in relative equilibrium.
Consider the simple case of a system of two boxes, B1 and B2. (See 4.) B2 can be much larger
than B1. The boxes are thermally insulated, electromagnetically shielded, and contains air at

31See e.g. Hemmo & Shenker (2010).
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Figure 3: A schematic demonic partition of system S into two subsystems S ′, S ′′, where S ′ is
now connected but has higher mean kinetic energy. S ′′ has lower mean kinetic energy.

different temperatures. It seems to me that we can ascribe a statistical state ρB to the joint
system of B1 and B2, and that, at least for some regimes,32 ρB is factorizable into two
subsystem statistical states ρB1 and ρB2 , each describing the statistical state of the respective
boxes. Taken as is, the proposed ‘timeless’ definition of relative equilibrium appears to hold.
However, it does not suffice to characterize these two boxes as actually being in relative
equilibrium: the two boxes are, ex hypothesi, at different temperatures.

Again, one might be understandably tempted to reply that connectability – this time
between subsystems, as opposed to within subsystems – is the issue here. If we simply
demand that the two subsystems must be connected, this would demand that we forgo the
insulation barriers and such. Consider a revised version of the second part of Rovelli’s
proposal: two subsystems S ′ and S ′′ are in relative equilibrium if and only if (20) holds, and
S ′ and S ′′ are connected. Then it seems prima facie plausible that two connected subsystems
would be in relative equilibrium when their statistical states factorize. But one must be careful
here and ask: what is it about connection per se, that is supposed to be thermodynamically
relevant here? Suppose for a second the scenario where B1 will never interact with B2 no
matter what, and the two boxes remain frozen at distinctly different temperatures, even when
we removed the barriers. If the world were indeed truly timeless and frozen per the
Wheeler-DeWitt equation, this could be a plausible scenario. In this scenario, though, it seems
that the systems would indeed satisfy the factorizability condition: changes in one subsystem
will leave the other subsystem unchanged. However, it seems wrong to say that they are in

32ρB might be factorizable into ρB1
and ρB2

simpliciter if we have perfect thermal insulation and perfect
mirrors preventing the transmission of radiation. Otherwise, there’ll be some regimes for which we can ignore
thermal radiation, and for which we might plausibly assume factorizability. For whatever regime in which
factorizability holds, there’s no clear physical sense in which the two systems are in relative equilibrium because
they are not at the same temperature.
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Figure 4: A system S containing two (approximately) non-interacting boxes B1, B2, such
that B1’s temperature is not equal B2’s. Their states factorize since they are non-interacting,
but they are not in relative thermal equilibrium.

thermodynamic equilibrium since they remain at different temperatures. Of course, in
everyday thermodynamics, B1 and B2 – once connected – would spontaneously arrive at the
same temperature, and we would say then that they are indeed in thermal equilibrium. But
note that connection here is merely a means to an end: it allows for – but does not guarantee!
– interaction between B1 and B2. Once we recognize this, though, the most plausible
definition of thermal equilibrium appears to become: two subsystems S ′ and S ′′ are in relative
equilibrium if and only if (20) holds, and S ′ and S ′′ are interacting. But interaction is
something that happens dynamically, and thus betrays Rovelli’s proposal to define
equilibrium in a timeless fashion.

This problem with using factorizability to entirely characterize relative equilibrium is
furthermore amplified when we are not allowed to constrain our considerations to systems –
and states – at a time, as when we consider generalized phase spaces and the context of the
problem of time. Consider the application of (20) to a system S undergoing a probabilistic
process such that at each time-step τ , the state of the system at τ is either 1 or 0 with some
probability. Furthermore, the state is probabilistically independent of future and past
outcomes. Then, for any arbitrary partition of the entire sequence across time into
sub-sequences, the two ‘subsystems’ factorize and so satisfy the timeless definition of relative
equilibrium. (See Fig. 5.) But it’s clear that these subsystems are not in relative thermal
equilibrium – they are simply probabilistically independent of each other.

The above problems would not be troubling if we took the proposed condition to hold over
time and allowed the subsystems to interact, viz. if the definition were justified by appeal to a
background time. Then Sfast would quickly lose energy to Sslow and equilibrate over time.
Likewise, the non-interacting subsystems would not be said to be in relative equilibrium, in
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Figure 5: A probabilistic process with outcomes {0, 1} each with some probability of
occurring every time-step τ . Outcomes at each τ are probabilistically independent of future
and past outcomes. The probability distribution for the sequence S clearly factorizes for any
choice of sub-sequences S ′, S ′′.

virtue of not interacting with each other. Similarly, the different temporal parts of the
probabilistic process will never interact with each other and hence are not in thermal
equilibrium.

But this move needs time and dynamics, returning us back to Landau & Lifshitz’s original
physical justification. For Landau & Lifshitz, (20) is justified when we’re allowed to take a
system to be comprised of quasi-closed systems – when these subsystems interact weakly with
each other. (1980, Ch. 1, §2) In the original context, the statistical independence encapsulated
in (20) seems to be justified in terms of (approximate) lack of interaction. But interaction
appears to be something steeped in dynamics and thus time. It doesn’t seem to be something
we have without time. Since we’re not allowed this justificatory resource, we’re not allowed
this natural solution.

To sum up, Rovelli’s ‘intrinsic’ definition of equilibrium was originally justified by Landau
& Lifshitz with respect to some background time and dynamics. In the timeless context, we
can of course reject Landau & Lifshitz’s justification on grounds of irrelevance. However, the
definition, on its own, appears to be inadequate for defining equilibrium: relative equilibrium
for all choices of partitions is unnecessary for characterizing equilibrium, and factorization is
insufficient for characterizing relative equilibrium. Without an unproblematic timeless
definition of equilibrium, the worries from before return: TTH cannot take off in a timeless
context because we seem to require time to define thermal equilibrium as I’ve argued in §3.1,
and without the concept of thermal equilibrium, we cannot pick out the right kind of states ω
over W with which to define thermal time without circularity.
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3.3 The time in the modular group

From both the standard and the ‘timeless’ thermodynamic perspectives, TTH seems to run
into the same conceptual worry: to derive time from a frozen world, we must appeal to time
to begin with via dynamical considerations. This problem can be seen more generally from
the algebraic perspective as well. Broadly, the problem is this. The modular group doesn’t
necessarily have dynamical meaning. Yet, the dependence of TTH on the modular group
requires interpreting the modular group as a bona fide dynamical object. However, any
argument for justifying this interpretation seems to require appeals to prior dynamical
considerations. Hence, any approach that relies on the modular group to derive time from
no-time, including the TTH as a special case, seems to run into circularity.

To be clear, I am not saying that the modular group cannot be formally defined as an
abstract object. Mathematically, the modular group comes ‘for free’ once we start with
faithful, normal, states, thanks to modular theory. Recall §2.3: given faithful, normal states ω,
the Tomita-Takesaki theory guarantees the existence of a unique strongly continuous unitary
group of automorphisms on W , the modular group, parametrized by a single parameter t ∈ R
such that:

αω
t A = ∆−itA∆it (21)

Furthermore, ω is a KMS state with respect to the modular group. If we interpret t to be time,
then ω looks like a state in thermal equilibrium, remaining stationary along t. Conversely, if
we interpret ω to be a thermal state, then t is the time along which ω is in thermal equilibrium.

I’ve already argued in §3.1 and §3.2 that the latter move cannot be made in a timeless
context without running into circularity, since we have no time-independent way of defining
thermal equilibrium and thermal states. For the same reason, the former move cannot be
made in a timeless context. But it seems to me that this worry will generalize to any attempt
to interpret the modular group dynamically.

To see this worry more explicitly, let us zoom out and look at the nature of the modular
group. The modular group associated with a defining faithful, normal state is simply a
strongly continuous one-parameter unitary group such that this faithful, normal state
remains invariant under the action of the group, αω

t . Recall from (13) that

ω(αω
t A) = ω(A) (22)

Formally, a one-parameter unitary group is simply a group of transformations which
conserves the inner product of Hilbert space ⟨ψ1|A|ψ2⟩ for states ψ1, ψ2, and operators A,
under the action of one-parameter unitary operators. Wigner’s theorem tells us that any
symmetry of a quantum system corresponds to either a unitary or antiunitary group of
actions on Hilbert space; a one-parameter unitary group can then be understood as
implementing a one-parameter symmetry.

The most well-known one-parameter unitary group is of course the time-translation group
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associated with e−iHt, where the parameter is the time t, which drives time-evolution under
either the Schrodinger or Heisenberg equations given a physical Hamiltonian H . But, as I’ve
already alluded to before, the time-translation group is not the only one-parameter unitary
group. Notably, thoroughly atemporal, spatial, symmetries such as rotational symmetry under
some angle θ about some axis, spatial translational symmetry by some distance x along some
axis, or spatial scale symmetry parametrized by a scale-factor λ, can also be implemented as
one-parameter unitary groups in principle. Furthermore, while these symmetries can be
understood dynamically as systems evolving from one symmetric state to another, they can
also be understood passively as redescriptions of the same system in terms of different
symmetrically related coordinates.33 This is what I meant when I said earlier that the modular
group can but need not be interpreted dynamically; in general, there will be many
one-parameter unitary groups which are clearly not dynamical depending on the symmetries
of the system in question. Just because the modular group is a one-parameter unitary group
does not mean it automatically matches the time-evolution given by the Heisenberg or
Schrodinger equations. The modular group’s physical meaning is in general underdetermined.

Those who wish to interpret the modular group dynamically given this underdetermination
of physical meaning – e.g. to treat its associated modular ‘Hamiltonian’ as a genuine physical
Hamiltonian associated with dynamics – must provide some physical argument for why we
should do so. We’ve already seen one proposed solution to this problem, which is the
conceptual core of TTH: if we start with a thermal state, then the modular group acquires
natural meaning as the time along which a thermal state remains in equilibrium. But to define
something as thermal requires time to begin with, as I’ve argued. It also seems to me that this
worry will generalize: any attempt to resolve the underdetermination of the modular group’s
physical meaning must appeal to dynamical considerations in order to motivate why a natural
interpretation of the modular group will be dynamical, but this runs us into circularity: we
wanted to use the modular group to define time to begin with.

Consider another related argument for when we can interpret the modular group
dynamically outside of the timeless context: the case of immortal, constantly accelerating
observers in the right wedge of Rindler spacetime. There are well-known results from
Bisognano & Wichmann (1975, 1976) suggesting a connection between the modular group
and spacetime geometry in the relativistic context. Specifically, given a Minkowski vacuum
state over the Weyl algebra A(R4) of the Klein-Gordon field and the associated von Neumann
algebraW(O) associated with an open region of spacetimeO, the restriction of the algebra to
the right Rindler wedgeR (see 6.) leads to a geometrical interpretation for the associated
modular group for the Minkowski vacuum state: its generators are Lorentz boosts on R.34 As
Fredenhagen (1985, 79) explains, given the Bisognano-Wichmann theorem, the modular
group’s unitary operators ∆it coincides as unitary operators U(Λ2πt) implementing Lorentz

33This corresponds to the distinction between active and passive symmetries.
34See Earman (2011), Swanson (2021).
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boosts of the form:

Λ2πt =


cosh2πt sinh2πt 0 0
sinh2πt cosh2πt 0 0

0 0 1 0
0 0 0 1

 (23)

In the right Rindler wedge, it’s known that Lorentz boosts Λ(aτ) implement
wedge-preserving time-translations along proper time τ for the orbit of observers with
constant acceleration a. Since the modular group aligns with Lorentz boosts in this specific
context, the modular group can be interpreted as a dynamical object; it aligns naturally with
the proper time of constantly accelerating observers.

Crucially, this connection between the modular group and dynamics is again justified in
virtue of the connection between the modular group and thermal states: the restriction of the
vacuum state toR is a KMS-state relative to the modular group with Unruh temperature a

2π
.35

This is the well-known Unruh effect: immortal, constantly accelerating observers in the right
wedge of Rindler spacetime observes the vacuum state to be instead a thermal state. This
provides a physical argument, again, for why the modular group aligns with the true
dynamics of the system. Equivalently, the ‘modular’ Hamiltonian aligns with the physical
Hamiltonian in this special case.36
However, this connection between modular time and proper time exists only for a very

specific class of models, and only for a very specific class of observers in said model:
immortally and constantly accelerating observers in Minkowski vacuum. Generally, thermal
time and proper time will not align. Swanson (2021) discusses the technical challenges that
arise once we relax these assumptions. For instance, if we consider finite observers who has
causal access not to the entire right Rindler wedge but a finite causal diamond (the
intersection of their future light-cone at ‘birth’ and past light-cone at ‘death’), the two
quantities don’t generally converge and modular time doesn’t have the desired geometrical
interpretation. Likewise when we consider nonuniform acceleration and nonvacuum states.37
In these cases, there is no dynamical justification, and hence no argument for interpreting the
modular group dynamically.

In short, for this particular case of the right wedge, we can resolve the underdetermination
of the physical meaning of the modular group because, given certain conditions, the modular
group action looks like something we already know to be dynamically relevant: Lorentz
boosts. As Borchers & Yngvason (1999) discusses, other cases for interpreting the modular
group proceed similarly: for instance, instead of restricting attention to the right wedge R of
Rindler spacetime, we can restrict attention instead to the forward light-cone region, in which
case the modular group looks like the dilation group. If we restrict attention to the double

35I set c, k and ℏ to 1. See Earman (2011).
36Specifically, the former is proportional to the latter. See Arias et al (2017).
37See Swanson (2021, §3).
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Figure 6: Schematic representation of the right Rindler wedgeR in Minkowski spacetime.
Rindler coordinates {ζ, y, z, ρ} are related to Minkowski coordinates {x, y, z, t} by
x = ζcoshρ and t = ζsinhρ. The Minkowski metric in Rindler coordinates becomes
ds2 = dζ2 + dy2 + dz2 − ζ2dρ2. Surfaces of constant ρ and ζ are labeled. ρ is ‘Rindler time’.
Timelike surfaces of constant ζ are the worldlines of constantly accelerating observers.
Dashed lines indicate null directions.

light-cone regions instead, the modular group looks like the double-cone preserving
conformal transformations. In these cases, we can interpret the modular group dynamically,
but only because we already had a prior grasp of what the dynamics ‘look like’.

So the situation looks like this: in general the modular group’s physical meaning is
underdetermined and does not necessarily have a dynamical interpretation. In each known
case where the modular group has a dynamical interpretation, it is by appealing to the
existence of prior dynamically relevant space-time symmetries. This is of course no problem
in the non-timeless context, but in the timeless context we should worry: if a dynamical
interpretation of the modular group must appeal to prior dynamical notions, then the modular
group cannot be used to define time and dynamics without circularity. This need not
necessarily be the case, but to my knowledge, no other strategy exists. Proponents of the
TTH will have to deal with this interpretative problem head-on if TTH is to take off.

4 Conclusion

To sum up, I’ve argued that TTH runs into a significant conceptual difficulty. To derive time
it seems that one must first start with time. Despite the elegance of the idea that time could be
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explained entirely by thermodynamic or algebraic considerations, TTH must overcome these
worries in order to be a bona fide solution to the problem of time.

Importantly, I’m not committed to the impossibility of satisfactory justification. I simply
want to emphasize that justification is presently lacking for applying thermodynamic
concepts, and dynamical concepts in the algebraic structure, in the timeless setting. I leave
open the possibility that the challenges raised here may be met.

In any case, this should make clear just how conceptually challenging the problem of time
is for quantum gravity researchers. Many of the problems I have raised here are subspecies of
more general problems of time plaguing quantum gravity.38 A similar problem also arises in
the semiclassical approach to the problem of time, where time is assumed to emerge
approximately as a result of semiclassical approximations. Chua & Callender (2021) argues
that these approximations, too, implicitly assume a background time for justifying their
application, and are yet unjustified otherwise. There is “no time for time from no-time", in
their words. Likewise, here, it seems that there is, for the time being, ‘no time for thermal
time from no-time’.
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