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Abstract

The view that the laws of nature produce later states of the universe from earlier ones

(prominently defended by Maudlin) faces difficult questions as to how the laws produce

the future and whether that production is compatible with special relativity. This article

grapples with those questions, arguing that the concerns can be overcome through a close

analysis of the laws of classical mechanics and electromagnetism. The view that laws produce

the future seems to require that the laws of nature take a certain form, fitting what Adlam

has called “the time evolution paradigm.” Making that paradigm precise, we might demand

that there be temporally local dynamical laws that take properties of the present and the

arbitrarily-short past as input, returning as output changes in such properties into the

arbitrarily-short future. In classical mechanics, Newton’s second law can be fit into this form

if we follow a proposal from Easwaran and understand the acceleration that appears in the

law to capture how velocity (taken to be a property of the present and the arbitrarily-short

past) changes into the arbitrarily-short future. The dynamical laws of electromagnetism

can be fit into this form as well, though because electromagnetism is a special relativistic

theory we might require that the laws meet a higher standard: linking past light-cone to

future light-cone. With some work, the laws governing the evolution of the vector and scalar

potentials, as well as the evolution of charged matter, for electromagnetism in the Lorenz

gauge can be put in a form that meets this higher standard.
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1 Introduction

In physics, we search for laws of nature. These laws are often described as governing the evolution

of systems over time—producing, or generating, later states from earlier ones. As Maudlin (2007,

pg. 182) puts it:

“The universe, as well as all the smaller parts of it, is made: it is an ongoing

enterprise, generated from a beginning and guided towards its future by physical

law.”

This dynamic production view of physical laws can be contrasted with two alternatives. The

first is the Mill-Ramsey-Lewis best systems account, according to which the laws do not truly

govern what happens in nature, but instead merely offer concise and informative descriptions of

all the things that happen throughout the entire history of the universe (including its full past

and future). Put poetically, the laws are patterns in the mosaic that is our universe. The second

is a recent alternative put forward by Chen & Goldstein (2022) and Adlam (2022a) according to

which the laws govern without dynamic production by placing constraints on possible histories

for the universe.

There is much that could be said about the advantages and disadvantages of these three

competing accounts, but here I would like to focus on two serious challenges facing the dynamic

production account. First, one might wonder how the laws produce the future. Second, one

might be worried as to whether that production is compatible with special relativity.

Asking how the laws produce the future verges on the unanswerable, as the dynamic

production account takes the action of the laws to be primitive—not something that can be

analyzed in terms of anything more fundamental. But, there is a sensible question here. Chen &

Goldstein (2022, pg. 60) and Dorst (unpublished) ask about the relata of the production relation:

what is being produced by what? If we take the input of the laws to be the state of the world

at just one moment, we only have a static snapshot that leaves out features of the world—like

velocities—that are needed to determine future evolution (Chen & Goldstein, 2022, pg. 46 &

60). Specifying the output is also tricky. The output of the laws cannot be the state of the world

at the next moment because (if time is continuous) there is no next moment (Loewer, 2012, pg.

133).

For the dynamic production account to be viable, the laws of nature must take a certain form.

They must include dynamical laws that specify (either deterministically or probabilistically)

how the world evolves from one moment to the next. The laws must fit what Adlam (2022a,b)

has called “the time evolution paradigm.” Making that paradigm precise, we might demand

that there be temporally local dynamical laws that take properties of the present and the

arbitrarily-short past as input and return as output changes in such properties into the

arbitrarily-short future. For theories like this, we have a clear picture as to how the laws produce

the future. The input to the laws is not just the present moment and the output is not the state

at any particular future moment.

Temporally local dynamical laws are not hard to find. In classical mechanics, Newton’s

second law can be fit into the above form if we follow a proposal from Easwaran (2014) and
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understand the acceleration that appears in the law to capture how velocity (taken to be a

property of the present and the arbitrarily-short past) changes into the arbitrarily-short future.

In classical electromagnetism, two of Maxwell’s equations can be interpreted as temporally local

dynamical laws (and the other two can be interpreted as non-dynamical laws).

Let us now turn to the second challenge. Dorst (unpublished) has criticized the dynamic

production account for being in tension with the special theory of relativity. One objection is

that special relativity pushes us to a block universe theory where the past and future are just as

real as the present and there is no work for the laws to do in producing the future. The future

is already there. This objection will be addressed briefly in section 3. Dorst’s other objection

is that we cannot say that dynamic production is occurring from one time slice to the next

without privileging a particular way of carving the universe into simultaneity slices. Maudlin

is willing to introduce such a preferred foliation because he believes that in quantum physics a

preferred foliation is the most natural way to account for the experiments that illustrate Bell’s

theorem. I think that it is valuable to understand how relativistic dynamic production might

work without a preferred foliation because there are important classical theories that do not

need such a foliation and because quantum theories that include parallel universes may not need

such a foliation.

In a relativistic theory like classical electromagnetism, we can go beyond merely requiring

temporally local dynamical laws that connect past and future and require that the dynamical

laws be spatiotemporally local, connecting the past and future light-cones at every space-time

point. This higher standard can be called “the relativistic time evolution paradigm.” With

some work, we will see that the laws of electromagnetism can be put in this form. There are

three types of laws that must be analyzed. First, there are the equations describing how charged

matter produces the electromagnetic field. In the Lorenz gauge, these are the relativistic wave

equations for the vector and scalar potentials. Such wave equations are standardly presented

alongside causality theorems proving that what happens at a given point is fully determined by

what happens on any slice of its past light-cone. The wave equations can be manipulated to

make this causal structure manifest so that they describe how properties of the arbitrarily-small

past light-cone change along the future light-cone. Second, there is the Lorentz force law giving

the electromagnetic force on charged matter. This can be rewritten so that the force on a body

at a location depends only upon properties of the arbitrarily-small past light-cone. Third, we

need an equation describing how charged matter responds to forces. For a point charge, this

would be the relativistic extension of Newton’s second law, where the force on the charge can

be set equal to the rate at which the charge’s relativistic momentum (interpreted as a property

of its arbitrarily-short past) changes into its arbitrarily-short future. Because the charge never

moves faster than the speed of light, the law will describe how properties of the arbitrarily-small

past light-cone change into the future light-cone.

The article proceeds as follows: The next section presents a precise statement of the time

evolution paradigm that theories must fit for the dynamic production account of laws to be

tenable. Section 3 compares the dynamic production account of laws to two alternatives: the

Mill-Ramsey-Lewis best systems account and the Chen-Goldstein-Adlam laws-as-constraints
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account. Section 4 explores multiple ways of fitting Newton’s classical theory of gravity into the

time evolution paradigm, highlighting some challenges and choice points that will be relevant to

our later discussion of electromagnetism. Section 5 gives a simple way to cast electromagnetism

into the time evolution paradigm. Section 6 puts forward the relativistic time evolution paradigm.

Section 7 presents a way of fitting electromagnetism into the relativistic time evolution paradigm,

showing that it is possible and leaving open whether there might be a better way of doing so. The

final section concludes by looking ahead to more advanced physics and considering the prospects

for interpreting quantum field theory and general relativity as theories of dynamic production.

2 The Time Evolution Paradigm

In this section, we will work our way to a careful presentation of the time evolution paradigm.

The idea that laws of nature dictate how the universe evolves over time may seem old-fashioned.

Adlam (2022a) writes:

“Newton bequeathed to us a picture of physics in which the fundamental role of laws

is to give rise to time evolution: the Newtonian universe can be regarded as something

like a computer which takes in an initial state and evolves it forward in time . . . But

science has come a long way since the time of Newton, and thus we should not

necessarily expect that accounts of lawhood based on a Newtonian time-evolution

picture will be well-suited to the realities of modern physics.” (Adlam, 2022a, pg. 3)

Physics has indeed come a long way since Newton, but one can debate whether that progress

has occurred within—or gone beyond—“the Newtonian time-evolution picture.”

Adlam is not alone in presenting the time evolution paradigm as behind the times. The 2023

Foundational Questions Institute (FQxI) essay contest prompt began with this sentence:

“Galileo claimed that the book of nature is written in mathematics, and indeed

the discipline that he, Newton, and other 17th-century natural philosophers and

mathematicians founded took on a particular form: mathematical laws expressing

necessary relations between elements of the world, largely expressed in differential

equations governing the time evolution of the state of the world.” (FQxI, 2023)

The prompt later asks: “Could it have been otherwise? Should it be otherwise now?” The

implication is that this is an outdated mold into which physical theories need no longer be cast.

I take the conservative view that this mold should be retained and that more effort should be

put into fitting existing and future theories into the mold. It has served physics well and should

not be abandoned lightly.

Let us take a moment to breakdown the mold as described in the FQxI quotation. First,

we have “mathematical laws” (the laws of nature), including “differential equations governing

the time evolution of the state of the world” (the dynamical laws). Second, these laws

express “necessary relations.” This means that the laws do not merely describe what actually

happens—they tell you what must happen. That is, they specify what is physically possible.
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Third, the relations expressed by the laws must be between “elements of the world.” Thus, the

theory must specify what the elements of the world are—what exists, or, put another way, what

the ontology of the theory is. Further, it is these elements of reality, and only these elements of

reality, that should appear in the physical laws (Maudlin, 2018).

In Newton’s physics, the laws are deterministic.1 For a given past, they allow only a single

future. It is sometimes said that the laws allow only a single future given the state at a moment,

but here we must be careful. How does one specify the physical state at a moment? Albert

(2000, pg. 9–10) gives two requirements for such a specification. First, the instantaneous state

should describe features of that moment alone. Second, a full set of instantaneous states across

all times should fully specify everything that occurs. You might initially think that the masses,

positions, and velocities of bodies should all be included in the instantaneous state, but Albert

uses his first requirement to disqualify velocity. Velocity is the rate at which position changes

and the velocity at a moment can only be determined by considering (arbitrarily small) temporal

neighborhoods around the moment in question. Rejecting velocity does not lead to a problem

with the second requirement because once the positions are specified at each time the velocities

are fixed. If we say that velocities are not included in instantaneous states, then the laws of

Newton’s physics will certainly fail to determine a unique future given the state at a moment.

But, the laws will give a unique future given the state of the world over an arbitrarily short

time interval. Let us thus follow Albert (2000, pg. 11) and Arntzenius (2000, pg. 195) and say

that a theory is deterministic if and only if specifying the state of the world over an arbitrarily

small time interval to the past of a given moment (assuming the laws to be obeyed during this

interval) uniquely determines a single future that is allowed by the laws (a single future that is

physically possible).2 Although there are lines of reasoning that would lead you to expect that

our laws will turn out to be deterministic, let us not attempt to settle the issue of determinism

here. We can formulate the time evolution paradigm such that it also allows for stochastic laws.

For stochastic laws, specifying the state of the world over an arbitrarily small time interval to

the past of a given moment gives probabilities for a variety of different futures.

The velocity at a moment can be part of what determines the future of that moment, provided

that we understand the relevant velocity to be the past velocity ~v p: a past derivative defined by

considering arbitrarily small time intervals to the past of that moment,

~v p(t) =

(
d

dt

)p
~x(t) = lim

δ→0

~x(t)− ~x(t− δ)
δ

, (1)

as in Lange (2005, sec. 2). This velocity is depicted in figure 1. Modifying a proposal

from Easwaran (2014), the acceleration that appears in the laws can be defined as the future

1Although the laws of Newtonian physics are generally presented as deterministic, there are in fact some subtle
and difficult questions as to whether they are truly deterministic that we will not explore here (Earman, 2004;
Wilson, 2009; van Strien, 2021).

2Builes & Impagnatiello (forthcoming) call this kind of determinism “Near Markovian Determination.”
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acceleration ~a pf : a future derivative of the past velocity,

~a pf (t) =

(
d

dt

)f
~v p(t) = lim

ε→0

~v p(t+ ε)− ~v p(t)
ε

. (2)

Thus, in Newton’s second law the acceleration of a body can be understood as a future effect of

present forces: ~F = m~a pf . This acceleration is depicted in figure 2.

Figure 1: The past velocity ~v p (1) of a body is determined by comparing the body’s location at
a moment to its location at progressively closer past moments (shown here as darkening dots).

Easwaran (2014) uses clever, but more complicated, definitions of the past and future time

derivatives. These definitions avoid referencing the present moment by either considering two

arbitrarily close past times (for the past time derivative) or two arbitrarily close future times

(for the future derivative).3 Easwaran calls these open-ended derivatives (because the endpoint

at the present is left out) and contrasts them with the closed-ended derivatives defined above.

Easwaran’s choice to use open-ended derivatives allows him to classify past velocity as entirely

about the past and future velocity as entirely about the future. To be more precise, he defines

a past neighborhood property as follows:

“A past neighbourhood property at t is a property of an object that is not grounded

in the fundamental properties of the object at t, but, for every interval 〈t−∆, t〉, the

fundamental properties of the object across that interval are sufficient to ground it.”

(Easwaran, 2014, pg. 849)

3In his notation, Easwaran (2014, pg. 849) defines the past velocity vpt (in one dimensional space) as the
quantity that satisfies

∀(ε > 0)∃(δ > 0)∀t′, t′′
(

(t− δ < t′, t′′ < t)→
∣∣∣∣xt′ − xt′′t′ − t′′

− vpt

∣∣∣∣ < ε

)
, (3)

if there is such a quantity.
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Figure 2: The future acceleration ~a pf (2) of a body is determined by comparing (a) the body’s
past velocity at a time ε in the future (which is determined by looking δ into the past of that
moment, as shown on the left), and (b) the body’s past velocity at the moment in question
(which is determined by looking δ into the past of that moment, as shown on the right). As is
evident from the image on the right, a body’s future acceleration ~a pf depends on its past and is
not a pure property of its present and future.

Future neighborhood properties are defined similarly, swapping 〈t − ∆, t〉 for 〈t, t + ∆〉. The

angle brackets denote that the endpoints of these intervals are not included. For Easwaran,

the acceleration that is defined as the future derivative of past velocity counts as a future

neighborhood property because: for any time t′ within the interval 〈t, t+∆〉 that you might look

to for the future derivative, you can find arbitrarily close pairs of earlier times within the interval

to apply his open-ended past time derivative and find the past velocity. Here we will adopt the

simpler closed-ended time derivatives and accept that future acceleration is not a property of the

future alone—as you might have desired for the output of a dynamical law—but instead describes

how properties that look to the past change as you move to the future (figure 2). Because the

past merely serves as a reference from which to evaluate changes toward the future, I still think

it is sensible to regard the future acceleration ~a pf from (2) as a future effect of present forces in

Newton’s second law. One reason behind the choice to use closed-ended derivatives will be given

later when we see that, in electromagnetism, even if we were to use open-ended derivatives the

laws would not give pure properties of the future light-cone as output.

Because our definition of past velocity depends on the present, let us adopt the following

definition of a past neighborhood property (modifying Easwaran’s definition to include the

present moment):

A past neighborhood property of an object at t is not determined by the present

properties of the object at t alone, but is determined once the present properties of
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the object are specified within any arbitrarily small interval [t−∆, t].4

A future neighborhood property could be defined similarly, replacing [t−∆, t] by [t, t+ ∆]. The

square brackets denote that the endpoints of these intervals are included. The acceleration ~a pf

can be classified as a past-to-future neighborhood property:

A past-to-future neighborhood property of an object at t is not determined

by the present and past neighborhood properties of the object at t alone, but is

determined once the present and past neighborhood properties of the object are

specified within any arbitrarily small interval [t, t+ ∆].

Note that, by this definition, future neighborhood properties also count as past-to-future

neighborhood properties because they are determined by the present properties over an

arbitrarily small interval to the future. However, some past-to-future properties—like the

acceleration ~a pf— are not future neighborhood properties. If we require dynamic laws to give

past-to-future neighborhood properties as output, we allow for either first-order dynamics (as in

the Schrödinger equation) where the output is a future neighborhood property or second-order

dynamics (as in Newton’s second law) where the output is a past-to-future neighborhood

property, but not a future neighborhood property.

To avoid action at a temporal distance, Easwaran (2014, pg. 857) conjectures that “The

fundamental causal [dynamical] laws must use present properties and past neighbourhood

properties to determine future neighbourhood properties.” This idea has not been widely

adopted, but it is an attractive proposal that fits well with a dynamic production account of

laws. Let us take a modified version of the idea onboard here and say that a law counts as a

temporally local dynamical law if it gives past-to-future neighborhood properties as output and

takes as input only present properties or past neighborhood properties. Dynamical laws that are

not temporally local might take as input properties at earlier or later times, as in the retarded

action-at-a-distance and Wheeler-Feynman versions of electromagnetism that will be discussed

in section 5.

Putting all the pieces together, we arrive at a strict and more precise version of the time

evolution paradigm. Let us say that a set of laws fits The Time Evolution Paradigm for a

specified ontology if and only if the following three conditions are met:

1. Temporally Local Dynamical Laws: A subset of the laws (the dynamical laws) give

past-to-future neighborhood properties of the specified ontology at a moment as output

and take as input only present properties or past neighborhood properties of the specified

ontology at that moment. The dynamical laws may give either precise values for the

past-to-future neighborhood properties properties or probability distributions over such

values.

2. Non-Dynamical Laws: The laws that do not take the above dynamical form (the

4Because we need at least some of the past to determine the velocity (or, using other words, to serve as grounds
for the velocity), but we do not need any particular past moment, there is a puzzle as to exactly what are the
facts about position in virtue of which the velocity at a moment is what it is (Builes & Teitel, 2019).

9



non-dynamical laws) express relations between present properties or past neighborhood

properties of the specified ontology at a moment.

3. Deterministic or Stochastic: Once a law-abiding history for the specified ontology over

an arbitrarily small time interval to the past of a given moment has been fixed, the laws

either uniquely fix a single future sequence of states or the laws yield a precise probability

distribution over future sequences of states.

This formulation allows for non-dynamical laws in addition to dynamical laws. As a candidate

example of a non-dynamical law, Maudlin (2007, pg. 13) gives Newton’s law of gravitation,

which uses present positions and masses to specify the present force on a given body. Maudlin

describes this law as an “adjunct principle” that allows the dynamical law ~F = m~a to predict

future time evolution. Chen & Goldstein (2022, pg. 60) consider the example of Gauss’s law,

~∇· ~E = 4πρ—which relates the present divergence of the electric field to the present distribution

of charge. Although Chen & Goldstein (2022) and Chen (2023) portray Maudlin as requiring all

laws to be dynamical laws, I take his written work to leave open the possibility that there may

be non-dynamical laws (as is evident in Maudlin, 2007, pg. 13–14; Maudlin, 2018). In any case, I

will not require that all laws be dynamical laws. That being said, the requirement in the second

condition that other laws “express relations between present properties or past neighborhood

properties” does rule out certain putative laws, such as those that posit probability distributions

over initial conditions (Chen & Goldstein, 2022, sec. 3.3.3). The third condition, that the laws

be either deterministic or stochastic, is meant to exclude laws that give incomplete stories about

the future: neither determining the future uniquely nor giving definite probabilities for different

futures.

Next, let us review the three competing philosophical accounts of laws of nature and how

they each might view the time evolution paradigm. Then, we will see how classical mechanics

and electromagnetism might be fit into the time evolution paradigm and discuss updating the

paradigm in a relativistic context.

3 Three Accounts of Laws of Nature

Philosophers disagree as to whether the laws of nature truly govern what happens in nature or

whether they merely describe patterns in what happens. Chen & Goldstein (2022) call this “the

great divide.” If the laws of physics simply describe patterns, then the laws are not fundamental

constituents of our universe—they emerge from an analysis of the more fundamental history of all

the things that happen in the universe throughout its past and future. The laws can be reduced

to the history of the universe. By contrast, laws that truly govern may be basic parts of the

universe—in addition to the particles, fields, or whatever else features in the ontology of the final

theory. That kind of view is called primitivist because the laws cannot be reduced to anything

more fundamental. In this section we will analyze three philosophical accounts of laws of nature:

one reductionist account that falls on the laws-describe side of the great divide (the best systems

account) and two primitivist accounts that fall on the laws-govern side of the divide (the dynamic
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production and laws-as-constraints accounts). Adlam (2022a), Chen & Goldstein (2022), and

Chen (2023) survey a few other accounts—the universals account (Platonic reductionism), the

powers account (Aristotelian reductionism), and the modal structure account—that will be set

aside here to focus our discussion.

Let us begin with the best systems account, originally put forward by David Lewis and

prominently defended by Barry Loewer.5 On this account, what is fundamental is the history of

the universe—a specification of what is happening at every point in spacetime. That specification

is supposed to be done using only certain special properties called “Humean properties” (after

the 18th century philosopher David Hume), explained by Loewer as follows:

“Call a property ‘Humean’ if its instantiation requires no more than a spatiotemporal

point and its instantiation has no metaphysical implications concerning the

instantiations of fundamental properties elsewhere and elsewhen. Lewis’s examples

of Humean properties are the values of electromagnetic and gravitational fields and

the presence or absence of a material particle at a point.” (Loewer, 1996, pg. 102)

Specifying the Humean properties at every point in spacetime is supposed to give the entire

history of the universe, called the “Humean Mosaic.” The mosaic contains everything ever has

or will happen, nearby or far away, observed or unobserved. Various candidate sets of laws of

nature (called “systems”) can be compared to see which does the best job at capturing patterns

in the mosaic, traditionally determined by weighing three key virtues: strength, simplicity, and

fit. Candidate systems are only allowed into the competition if they have no false consequences

about the universe, and are considered stronger the more informative their true consequences

are. Roughly, you might say that strength is a measure of how many possibilities are ruled out

by a given system, though there are infinities at play that will make it hard to render this gloss

precise. The goal is to find a strong system that is also relatively simple, as simplicity is a virtue

that matters in addition to strength. Like strength, it is difficult to precisely measure simplicity.

The third and final virtue is fit. If a system assigns probabilities for certain events to occur, one

must consider how well those probabilities match reality. The higher the probability assigned

to what actually happens, the better the system scores on fit. Ideally, one system will emerge

as the clear winner when judged on strength, simplicity, and fit. This system is crowned as the

best system and it gives the actual laws of nature. Of course, our ability as humans to know the

details of the mosaic and judge competing systems is limited. But, the idea here is that there is

a fact out there about what the best system would be for the mosaic as a whole and that our

scientific explorations can potentially point us towards it.

The best systems account does not require the laws of nature to fit the time evolution

paradigm from the previous section, but deterministic or stochastic temporally local dynamical

laws do have a good shot at being included in the best system because they get you a lot from a

little: allowing you to predict the future (at least probabilistically) from an arbitrarily thin time

slice. Callender (2017, ch. 7-8) argues that time is a special dimension within the best systems

5For an introduction to the best systems account, see Loewer (1996); Lange (2008).
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account because the laws that emerge as part of the best system include laws of time evolution.

As Callender (2017, pg. 142) puts it, “Time is that direction on the manifold of events in which

we can tell the strongest or most informative stories.”

The best systems account can be criticized for failing to explain why things happen the

way they do. The account starts with a history of things that happen and then seeks to find

patterns in this history. By contrast, the dynamic production account views the history as

generated by the laws. This account does not require the history of the universe to be a mosaic

of Humean properties, but if we temporarily adopt the Humean mosaic language we can say

that the mosaic is produced by the laws. Here is how Tim Maudlin, our primary proponent of

dynamic production, puts it:

“The universe started out in some particular initial state. The laws of temporal

evolution operate, whether deterministically or stochastically, from that initial state

to generate or produce later states. And the sum total of all the states so produced

is the Humean Mosaic.” (Maudlin, 2007, pg. 174)

It is unclear how seriously Maudlin takes the idea of an initial state—and in any case the contours

of the dynamic production account discussed here need not match Maudlin’s exactly—but let

us not build into the account any assumption that there was a first moment.6 The key point

here is that the laws allow us to explain future states from past states using the laws of nature

because the laws are additional features of the universe beyond the things within the universe

that are governed by the laws.

The dynamic production account relies on a fundamental asymmetry between past and future

(a fundamental arrow of time),7 but Maudlin (2007, pg. 108–109) argues that it is compatible

with the block universe theory according to which the past and future are just as real as the

present. It would be worrisome if the account was not compatible with the block universe theory

because special relativity arguably forces us to the block universe theory.8 Dorst (unpublished)

has challenged the compatibility, asking how the laws could possibly produce the future if it is

already out there. This is a serious criticism that could be discussed in depth, but let me briefly

point out that the a similar argument could be given against the possibility of any ordinary

act of production within the block universe theory, such as the creation of a sculpture. How

can Michelangelo create the sculpture of David if it is already out there (in the future)? One

way of responding to Dorst would be to argue that just as ordinary acts of production (like

Michelangelo’s) are compatible with the block universe theory, the dynamic production of the

6Chen & Goldstein (2022, pg. 61) criticize the assumption of a first moment because it would rule out
spacetimes without temporal boundaries. They say that it appears to be an important part of the dynamic
production account because “it is what gets the entire productive enterprise started,” but I do not see any
problem with the idea that production has always been occurring no matter how far back you go in time. Given
the articulation of the time evolution paradigm in section 2, it is actually not quite right to say that the first
moment gets the productive enterprise started. We normally need an arbitrarily thin time slice preceding a given
moment for the laws to generate time evolution (because we need velocities and other rates of change). Any
moment after the first can be explained as the product of an earlier arbitrarily thin time slice evolving via the
laws, but the first moment alone would be insufficient to get the evolution going.

7See Loewer (2012).
8See Putnam (1967); Zimmerman (2011).
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laws is compatible with the block universe theory. While it is true that from an outside-of-time

perspective the future “already” exists, production is something that happens within time and

at a moment the future will exist but does not already exist.

The dynamic production account appears to require the laws of nature to fit something like

the time evolution paradigm from section 2. The dynamical laws of that paradigm would be

what Maudlin (2007) calls the fundamental laws of temporal evolution (FLOTEs). It is these

laws that generate time evolution, guiding the ontology and producing future states from earlier

ones. Chen & Goldstein (2022, pg. 46 & 60) challenge the idea of dynamic production because

the state of the universe at a moment does not contain features like momentum that are needed

to evolve the state forward via the laws. However, following our discussion from section 2, we can

take momentum to be a past neighborhood property (like velocity) and understand the relation

of dynamic production to connect the present, and its past neighborhood, to the future. The

way that the dynamical laws of section 2 connect past to future also helps to address Loewer’s

(2012, pg. 133) remark that “there isn’t a ‘next’ state if time is continuous” to support the claim

that one state of the universe produces the next via the laws.

Non-dynamical laws play a quite different role from the dynamical laws, constraining the

relations between properties of the present and arbitrarily-short past at a moment. Maudlin

(2007, ch. 1) calls such laws adjunct principles and describes them as principles “that are needed

to fill out the FLOTEs in particular contexts, principles about the magnitudes of forces and

the form of the Hamiltonian, or about the sorts of physical states that are allowable.” As

was mentioned earlier, I will understand the dynamic production account as allowing for such

non-dynamical laws that supplement the dynamical laws. The non-dynamical laws restrict the

starting points from which dynamic production might occur.

The third condition of the time evolution paradigm requires the laws to be either deterministic

or stochastic. This is a natural requirement for the dynamic production account. To dynamically

produce the future, the laws must be sufficiently specific that they either yield a unique future or

a probability distribution over possible futures. If the laws give probabilities, those probabilities

should be understood as basic propensities that are not to be reduced to anything more

fundamental, such as long-run frequencies (Frigg & Hoefer, 2007; Loewer, 2012, pg. 118).

A defender of dynamic production need not claim that it is metaphysically impossible to

have laws of nature that violate the time evolution paradigm and cannot be understood as

dynamically producing the future from the past. Instead, they could simply claim that the laws

of our world play this special metaphysical role. Dynamic production is not part of what it

takes for something to be a law, it is merely a feature of our laws. It is difficult to say what

it takes in general for something to be a law, but you might say that at a minimum it must

constrain what is physically possible. Here the dynamic production account can make peace with

the next account to be discussed: what I will call the “laws-as-constraints account,” putting an

umbrella over what Chen & Goldstein (2022) call “minimal primitivism” and Adlam (2022a,b)

calls “the constraint framework.” The dynamic production account sticks its neck out further

and we can debate whether that boldness is wise. Proponents of the laws-as-constraints account

prefer the flexibility of their account, arguing that the laws of our world may well turn out not to
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include dynamical laws and that our philosophical theorizing should not preclude this possibility.

Proponents of dynamic production can respond that we have good reason to expect the final

laws to include laws of time evolution because our most successful extant theories are theories

of time evolution, or at least can be formulated as theories of time evolution.

Chen & Goldstein (2022, pg. 23) present their account as follows:

“On our view, fundamental laws govern by constraining the physical possibilities of

the entire spacetime and its contents. They need not exclusively be dynamical laws,

and their governance does not presuppose a fundamental direction of time.”

Like the dynamic production account, the laws-as-constraints account does not have to view the

history of the universe as a mosaic of Humean properties, but adopting the mosaic language the

view can be put succinctly as: “the laws of nature are understood to take the form of sets of

Humean mosaics, or probability distributions over each set” (Adlam, 2022a, pg. 25). The laws of

nature impose constraints that restrict the physically possible histories of the universe, leaving

a set of allowed histories. We will take this to be a primitivist account where the laws are not

reduced to anything more fundamental, though Adlam (2022a, sec. 3.3) leaves the door open

for a future reduction. Probabilistic laws might be accommodated as Adlam suggests by having

the laws assign probabilities to histories or in some other way. Chen & Goldstein (2022, sec.

3.3.3) survey five options and Barrett & Chen (2023) further explore Chen & Goldstein’s fourth

option, according to which the laws simply select a set of allowed histories—roughly put, these

would be histories that match what you would expect to see if certain probabilistic laws were in

place.

The laws-as-constraints account does not require the laws of nature to fit the time evolution

paradigm from section 2, but it is compatible with a preference for dynamical laws. As Chen &

Goldstein (2022, pg. 50) write, “The preference for FLOTEs and dynamical laws more generally

may be explained by a preference for laws that strike a good balance between simplicity and

informativeness.” The laws are not determined by a competition of strength and simplicity (as

in a Humean account), but these factors can still serve as guides as we seek to determine the

laws of nature from the evidence that we have.

Although the laws-as-constraints account permits laws that fit the time evolution paradigm,

one of the main motivations for the view is a skepticism as to whether the final laws of our world

will indeed fit the time evolution paradigm. This debate hinges on difficult questions about the

interpretation of general relativity and quantum field theory that will only be discussed briefly

in the conclusion. In this paper, I would like to focus on theories that seem like they should fit

the time evolution paradigm to better understand how dynamic production works in these cases.

Figuring out how the laws might produce the future in these easier cases lays the groundwork

for tackling the harder cases.
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4 Classical Mechanics

In classical mechanics with point particles, you might say that there is just one dynamical

law: Newton’s second law, force equals mass times acceleration. Following Easwaran (2014), as

discussed in section 2, we can understand this law as taking the net force ~Fi on a given mass mi

as input and giving the body’s future acceleration (2) as output,

~Fi = mi~a
pf
i (dynamical law) . (4)

For this to be a dynamical law fitting the time evolution paradigm, the force would have to be

a present or past neighborhood property. If the only forces at play are gravitational forces, then

the net force on a mass is a present property set by Newton’s law of gravitation,

~Fi =
∑
j 6=i

−Gmimj

r2
ji

r̂ji (non-dynamical law) . (5)

Here r̂ji is the unit vector pointing from mj to mi and rji is the distance between mj and mi.

Maudlin (2007, pg. 13) describes Newton’s law of gravitation as a non-dynamical law—an adjunct

principle. Including it as such would yield a set of laws that fit the time evolution paradigm. In

this case, it is straightforward to combine the dynamical and non-dynamical laws to get a single

dynamical law that can govern on its own (without the need for any non-dynamical laws),

~a pfi =
∑
j 6=i

−Gmj

r2
ji

r̂ji (dynamical law) . (6)

We can thus formulate Newtonian gravity either as a theory with two laws (one dynamical and

one not), (4) and (5), or as a theory with a single dynamical law, (6).

One might object to the earlier characterization of Newton’s second law in terms of future

acceleration (4). That law is time-asymmetric, but Newtonian gravity is ordinarily taken to be

a time-symmetric theory. Let me make two remarks about this. First, although the ordinary

math may not be time-asymmetric, explanations of the math generally are. Forces are described

as causing future acceleration, an understanding that fits well with (4) (Easwaran, 2014, pg.

852–853). Second, the theory remains time-symmetric in the sense that it is time-reversal

invariant: for any history that obeys (4) and (5), the time-reversed history will obey (4) and (5).

The key point here is that any history where ~F = m~a pf is also a history where ~F = m~a p because

~a pf cannot differ from ~a p if particles are only interacting through well-behaved gravitational

forces.

The above story about the laws of Newtonian gravity changes if you take the ontology to

include a gravitational field ~g in addition to the point masses. Then, you might try the following
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collection of laws:

~Fi = mi~a
pf
i (dynamical law)

~Fi = mi~g(~xi) (non-dynamical law)

~g(~x) =
∑
j

−G mj

|~x− ~xj |2
(non-dynamical law) . (7)

The first law is Newton’s second law, appearing again as the only dynamical law. The second

law relates the force on a body to the gravitational field at the body’s location ~xi. The third

law gives the gravitational field resulting from a certain arrangement of masses. It is interesting

to note that the gravitational field does not have its evolution determined by a dynamical law.

It is rebuilt at each moment by a non-dynamical law.

Figure 3: The gravitational field of a point mass is ill-defined at the location of that point mass.

The set of laws for Newtonian gravity (including a gravitational field) that were just given

(7) will not function properly because they have problems with self-interaction. As you approach

the location of any point mass, the gravitational field becomes infinitely strong and does not

have a clear direction (figure 3). The field is ill-defined at the mass’s location, which is exactly

where you would like to use it to calculate the force on the mass. One way to address this

problem is to introduce a separate gravitational field sourced by each particle and stipulate that

particles do not feel their own fields. Then you could derive Newton’s law of gravitation (5) with

the important j 6= i in the sum. A different strategy for addressing self-interaction would be

to retain a single gravitational field and replace point masses by extended bodies, either rigid

bodies or continua.9 Then, we would have laws like:

~∇ · ~g = −4πGρm (non-dynamical law) (8)

~∇× ~g = 0 (non-dynamical law) (9)

~f = ρm~g (non-dynamical law) , (10)

9For discussion of the different possible ontologies for classical mechanics (point particles, rigid bodies, and
continua), see Wilson (1998, 2013); van Strien (2021).
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where G is the gravitational constant, ρm is the mass density, and ~f is the density of force exerted

by the gravitational field on matter. (Note that because Newtonian gravity closely parallels

electrostatics, the first two laws resemble Maxwell’s equations as they apply to electrostatics.)

None of the three laws presented above are dynamical laws. To get dynamics, we would also need

a version of Newton’s second law. For rigid bodies, one can integrate the force density over the

volume of the body to get a net force and use this to determine how the center of mass moves.

One would also need a law connecting the density of force on the body to its rotation. For

continua, the reaction to experienced forces will depend on the nature of the body experiencing

the forces. (We’ll return to that issue in section 7.) Eliminating the gravitational field, you could

alternatively have rigid bodies or continua interacting by gravitational action-at-a-distance—as

in (5). All of this begins to illustrate the plethora of options that you have for understanding

the laws and ontology of classical mechanics while staying within the time evolution paradigm.

Although there are many ways to formulate laws of classical mechanics that fit within the

time evolution paradigm, there are ways to formulate the laws that appear to break with

this paradigm. Adlam (2022a, pg. 3–4, 35) and Chen & Goldstein (2022, pg. 46–47) cite the

Lagrangian stationary action approach to classical mechanics, where one can determine whether

potential histories for a system are allowed or forbidden by seeing whether they extremize (either

maximize or minimize) the action functional (a path integral of the Lagrangian evaluated along

the system’s trajectory through its configuration space). As this method takes the history

as input and returns either allowed or forbidden as output, it does not seem to fit the time

evolution paradigm. Chen & Goldstein (2022) acknowledge that one can get the same division

between allowed and forbidden histories from laws of time evolution, but they take it to be

an advantage of their laws-as-constraints account that they permit the Lagrangian method to

directly give a candidate law of nature. Adlam (2022a, pg. 3) writes that “Lagrangian methods

are well-recognised as valuable mathematical tools, but they have not usually been taken seriously

as possible descriptions of reality, presumably because the Lagrangian is optimized over an entire

history and thus the Lagrangian description can’t straightforwardly be understood within the

standard time-evolution picture.” It is fair for these authors to note that classical mechanics

does not need to be formulated as a theory of time evolution. My aim in this section has been

to canvas some of the ways that it can be formulated as a theory of time evolution so that we

can begin to confront the challenges facing dynamic production. Let us now proceed to more

advanced physics: classical electromagnetism.

5 Electromagnetism, First Pass

To formulate the laws of electromagnetism, we must answer a central question about the theory’s

ontology: Does the electromagnetic field really exist or is it merely a tool that can be used to

calculate the forces between bits of charged matter? One way to eliminate the electromagnetic

field is to formulate electromagnetism as a theory of retarded action-at-a-distance.10 The force

10See Lange (2002); Frisch & Pietsch (2016); Hubert & Sebens (2023).
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on a given particle now is the result of interactions between that particle now and other particles

at earlier times—the times when their world-lines intersect the past light-cone of the given

particle. This version of electromagnetism breaks the time evolution paradigm because the

interactions are not temporally local. Another way to eliminate the electromagnetic field is to

include half-retarded half-advanced action-at-a-distance, as in the Wheeler-Feynman version of

the theory. The force on a given particle now is the result of interactions with other particles

intersecting both the past and future light-cones of that particle. Again, we have a theory

that violates the time evolution paradigm because it is not temporally local. Chen & Goldstein

(2022) give Wheeler-Feynman electromagnetism as an example of a theory that their minimal

laws-as-constraints account can accommodate and a dynamic production account cannot.

Although the retarded action-at-a-distance and Wheeler-Feynman version of

electromagnetism are worthy of study, there are good reasons to prefer a version of

electromagnetism that takes the electromagnetic field to be real. A real electromagnetic

field can ensure conservation of energy and momentum by itself possessing energy and

momentum.11 When we look to ahead to quantum field theory, the electromagnetic field is

treated in a similar way to charged matter and thus it is natural (with the benefit of hindsight)

to view both as real in classical electromagnetism (Sebens, 2022a; Hubert & Sebens, 2023).12

Accepting the electromagnetic field as real, one can still debate whether the electromagnetic

field’s behavior can always be traced back to past sources or whether the field has independent

degrees of freedom. Put more precisely, one can debate whether the electromagnetic field

must obey a radiation condition restricting it to be the kind of electromagnetic field that

you might introduce as a calculational tool within a retarded action-at-a-distance version of

electromagnetism. If you do impose such a restriction, the electric and magnetic fields at a

given point in space and time can be determined by looking at the behavior of charged matter

along the past light-cone of that point via Jefimenko’s equations (Griffiths, 2013, sec. 10.2.2).

Jefimenko (2000, ch. 1) criticizes Maxwell’s equations because none fit the following mold:

“. . . equations depicting causal relations between physical phenomena must, in

general, be equations where a present-time quantity (the effect) relates to one or

more quantities (causes) that existed at some previous time.” (Jefimenko, 2000, pg.

4)

Jefimenko takes Maxwell’s equations to express relations between present-time quantities. (We

will see shortly that, by interpreting the time derivatives as future derivatives, two of Maxwell’s

equation can actually be understood as linking cause and effect with cause preceding effect.13)

Unlike Maxwell’s equations, Jefimenko’s equations connect present fields to past sources and

11Lazarovici (2018, sec. 4.2) gives a response to this concern defending the Wheeler-Feynman theory. Lange
(2002) presents the argument for the reality of the electromagnetic field from conservation of energy and
momentum, but finds it lacking in a relativistic context because energy and momentum are frame-dependent
quantities. He bases his argument for the field’s reality on the fact that it possesses mass.

12Proponents of the Wheeler-Feynman theory can of course pursue a revisionary approach to quantum field
theory that eliminates the electromagnetic field and thus does not treat it in a similar way to charged matter.

13This response to Jefimenko is similar to the response that Easwaran (2014, pg. 853) gives to Field’s (2003,
pg. 438) general claim that the differential equations that appear in laws of physics cannot be interpreted causally
because they relate quantities at the same time.
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thus straightforwardly fit his mold. However, that connection is temporally non-local and thus,

although they may conform to our basic expectation that causes should come before effects,

Jefimenko’s equations do not fit the time evolution paradigm as stated in section 2.

The restricted version of electromagnetism that Griffiths and Jefimenko prefer forbids

unsourced radiation. It thus appears to yield a natural explanation as to why electromagnetic

waves diverge—an explanation of the arrow of electromagnetic radiation. That asymmetry

can also be explained in an unrestricted version of electromagnetism, as it is improbable that

any unsourced contribution to the electromagnetic field would result in coordinated converging

waves (North, 2003; Hubert & Sebens, 2023). There is room to debate which version of

electromagnetism gives a better explanation of this asymmetry, but I prefer the explanation

offered by the unrestricted version because the same kind of explanation can be given as to

why entropy increases and why other waves diverge. It also fits well with quantum field theory,

where the quantum electromagnetic field is not restricted to always have past sources (where,

put another way, photons no more need past sources than electrons do).14

Having focused our attention on versions of electromagnetism that treat the electromagnetic

field as real and do not impose a radiation condition requiring that field be traceable to past

sources, there is still plenty of room to consider different versions of the theory. Maudlin (2018)

presents 10 distinct proposals for the laws and ontology. It is not hard to find a version of the

theory that fits the time evolution paradigm. We can start with the standard combination of

Maxwell’s equations and the Lorentz force law,15 written here in Gaussian units:

~∇ · ~E = 4πρ (11)

~∇× ~E = −1

c

∂ ~B

∂t
(12)

~∇ · ~B = 0 (13)

~∇× ~B =
4π

c
~J +

1

c

∂ ~E

∂t
(14)

~F = q

(
~E +

1

c
~v × ~B

)
. (15)

If we understand the time derivatives in (12) and (14) to be future time derivatives, then those

two equations can be dynamical laws for the electric and magnetic fields.16 The other three

laws would be non-dynamical laws. To determine the future time evolution, the Lorentz force

law (15) would need to be accompanied by a dynamical law for particle motion, like Newton’s

second law (4) (modified to be made relativistic, as will be discussed in due course). Note that

here we are adopting an ontology of point particles for the charged matter and thus the charge

and current densities will feature delta functions (as in Landau & Lifshitz, 1971, sec. 28).

14See Wald (2022, sec. 1.3); Hubert & Sebens (2023, sec. 3.3).
15See, e.g., Feynman et al. (1964, table 18-1).
16Easwaran (2014, pg. 857) gives a similar analysis of the Schrödinger equation: “In quantum mechanics, the

Schrödinger equation directly sets the first derivative of the quantum wave-function, which must thus be a future
neighbourhood property.”
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The use of point particles will lead to trouble with self-interaction because the electromagnetic

field will become infinitely strong at the location of any particle (just where the field’s value

matters for calculating forces). I will set these problems aside for now and we will return to

them in section 7. To remove infinities, it would be better to work with charge distributions and

avoid point charges.

6 The Relativistic Time Evolution Paradigm

Although it is not difficult to find a version of electromagnetism that fits the time evolution

paradigm, that paradigm may be too loose. Electromagnetism is a relativistic theory and as

such we can put tighter constraints on the form that dynamical laws can take. They must

be spatiotemporally local,17 not merely temporally local. Here is how Maudlin (2007, pg. 60)

puts the requirement of relativistic locality: “the physical state at any point of space-time is

determined or influenced only by events in its past light-cone.”18 If the state at any point can

only be influenced by events in its past light-cone, then the state at a particular space-time point

can only influence events in the future light-cone of that point (for these are the events that it

is in the past light-cone of). Given Bell’s theorem, quantum physics may force us to give up on

this kind of locality (Maudlin, 2014). But, it seems like it should at least be achievable within

classical electromagnetism.

Instead of connecting present and past neighborhood properties at a time to past-to-future

neighborhood properties, one might expect relativistic dynamical laws to connect properties

at a space-time point and past light-cone neighborhood properties to past-to-future light-cone

neighborhood properties. Those terms can be defined as follows (modifying the definitions from

section 2):

A past light-cone neighborhood property of an object at (~x, t) is not determined

by the space-time point properties of the object at (~x, t) alone, but is determined once

the space-time point properties of the object are specified within the past light-cone

of (~x, t) over any arbitrarily small interval [t−∆, t].

A past-to-future light-cone neighborhood property of an object at (~x, t) is not

determined by the space-time point and past light-cone neighborhood properties of

the object at (~x, t) alone, but is determined once the space-time point and past

light-cone neighborhood properties of the object are specified within the future

light-cone of (~x, t) over any arbitrarily small interval [t, t+ ∆].

One could of course also define future light-cone neighborhood property in parallel to past

light-cone neighborhood property. As before, it will follow from the definitions that future

light-cone neighborhood properties are past-to-future light-cone neighborhood properties.

17Here I am talking about spatiotemporal locality in the special relativistic sense, not the broader sense in which
there is no light-speed limit on influences and the only constraint is that there be spatiotemporal continuity (see
Lange, 2002, ch. 1).

18See also Maudlin (2007, pg. 20 & 30).
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With these definitions in hand, let us say that a set of laws fits The Relativistic Time

Evolution Paradigm for a specified ontology if and only if the following three conditions are

met (with changes from the less strict time evolution paradigm of section 2 marked in italics):

1. Spatiotemporally Local Dynamical Laws: A subset of the laws (the dynamical laws)

give past-to-future light-cone neighborhood properties of the specified ontology at a point in

space-time as output and take as input only space-time point properties or past light-cone

neighborhood properties of the specified ontology at that space-time point. The dynamical

laws may give either precise values for the past-to-future light-cone neighborhood properties

properties or probability distributions over such values.

2. Non-Dynamical Laws: The laws that do not take the above dynamical form (the

non-dynamical laws) express relations between space-time point properties or past

light-cone neighborhood properties of the specified ontology at that space-time point.

3. Deterministic or Stochastic: Once a law-abiding history for the specified ontology over

an arbitrarily small time interval to the past of a given moment has been fixed (in some

inertial reference frame), the laws either uniquely fix a single future sequence of states or

the laws yield a precise probability distribution over future sequences of states.

Present properties (that make no reference to other times) have been replaced by space-time point

properties (that make no reference to other times or places). Past neighborhood properties have

been replaced by past light-cone neighborhood properties (that are defined in terms of arbitrarily

small subregions of the past light-cone). Similarly, past-to-future properties have been replaced

by past-to-future light-cone properties. The third condition acknowledges that the selection of

a thin time slice will depend on the frame of reference and requires deterministic or stochastic

dynamics going forward from any such slice. The three conditions are not meant to specify what

it takes for a theory to be relativistic or to impose the strictest possible standards on relativistic

laws. The conditions are just meant to give a baseline as to the way that you might expect time

evolution to work in a relativistic theory that includes laws of time evolution. In particular,

the third condition could be strengthened to demand a more local form of determinism or

stochasticity. In a relativistic theory, specifying what is going on at a time within any spherical

region (and its arbitrarily-short past light-cone) should either fix, or give probabilities for, future

slices of the converging light-cone that the spherical region forms the base of.19

Dorst (unpublished) has criticized the dynamic production account of laws because it claims

that earlier states produce later ones and this appears to require a preferred foliation—that is, a

preferred way of carving space-time into simultaneity slices so that we can identify which slices

are producing which. Chen & Goldstein (2022, pg. 46) give a quick version of this criticism as

well. Looking at Bell’s theorem in quantum physics, one might argue that we have independent

reason to believe in a preferred foliation and be sanguine about its use here (Maudlin, 2007, pg.

117; Maudlin, 2018, sec. 6). The relativistic time evolution paradigm provides an alternative

19The source-free homogeneous wave equation achieves this kind of determinism, as is proved in Strauss (2008,
sec. 9.1) and will be discussed in section 7.
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way to respond to Dorst’s worry. We can view the dynamic laws as producing the future at each

space-time point, with the inputs lying within the past-light-cone and the outputs concerning the

future light-cone. We can then collect these instances of production at-a-point to get production

from one time slice to the next. Different foliations will correspond to different ways of collecting

these instances of production.

I believe that Dorst would categorize this response as what he calls “pluralistic production,”

because for every foliation it is true that the earlier states produce the later states. Dorst rejects

this response because if we ask what produces a given event e at some particular space-time

point, we get too many answers—overdetermination. Can it really be that the previous time

slices approaching the event on one foliation produce the event and the previous time slices

approaching the event on another foliation produce the event when these time slices are so

different? Yes, it can be so because in a relativistic theory it is only the points that are shared

between these series that produce e. It is the points in the past light-cone of e that produce e.

There are different ways to take a limit within this light-cone, but they capture the same chains

of production (see figure 4).

Figure 4: This figure shows schematically the chains of production connecting points in some
event e’s past light-cone to the event. It also shows two series of time slices approaching the event
e that can be described as producing the event. The points in the event’s past light-cone are
carved up differently by the different series, but the underlying relations of production remain
unchanged.

7 Electromagnetism, Second Pass

It requires a bit of work to fit electromagnetism into the relativistic time evolution paradigm,

but the trick can be done. Here I present one way to do so, without claiming that it is the best

and final way. We will need to find suitable laws governing the evolution of the electromagnetic

field, the forces on charged matter, and the reaction of matter to forces. Let us begin with the

field. We can use the scalar potential φ and the vector potential ~A to specify the state of the
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electromagnetic field, where these potentials are related to ~E and ~B by

~E = −~∇φ− 1

c

∂ ~A

∂t
~B = ~∇× ~A . (16)

These relations ensure that two of Maxwell’s equations are satisfied automatically, (12) and (13).

Let us adopt the Lorenz gauge condition as a way of partially fixing the gauge freedom in the

potentials,20

~∇ · ~A+
1

c

∂φ

∂t
= 0 . (17)

The remaining two of Maxwell’s equations yield wave equations for φ and ~A,(
∇2 − 1

c2
∂2

∂t2

)
φ = −4πρ (18)(

∇2 − 1

c2
∂2

∂t2

)
~A = −4π

c
~J , (19)

which can be more compactly using the d’Alembertian, � = ∇2 − 1
c2

∂2

∂t2 , as

�φ = −4πρ (20)

� ~A = −4π

c
~J . (21)

A first try at formulating these wave equations as laws of time evolution for the potentials,

modeled on Easwaran’s version of Newton’s second law (4), would be to interpret the second

derivative with respect to time as a future derivative of a past derivative (just as acceleration

wast taken to be the future derivative of the past derivative of position),

(
∂

∂t

)f (
∂

∂t

)p
φ = 4πc2ρ− c2∇2φ (22)(

∂

∂t

)f (
∂

∂t

)p
~A = 4πc ~J − c2∇2 ~A . (23)

These equations would yield temporally local but not spatiotemporally local dynamics. The ∇2

operators yield neighborhood properties of the potentials that are determined by considering

arbitrarily small spatial neighborhoods at the moment in question. That is forbidden by the

relativistic time evolution paradigm. These are not past light-cone neighborhood properties.

Although this first attempt fails, we should be optimistic that the wave equations in (18)

and (19) can be interpreted as giving spatiotemporally local dynamics. When the homogenous

(source-free) wave equation, �u = 0, is discussed in textbooks on partial differential equations,

it is standard practice to prove a “causality theorem” showing that a given spacetime point

20Adopting the Coulomb gauge would lead to very different laws for the potentials, laws that appear to involve
instantaneous action-at-a-distance and to rely on a preferred simultaneity slicing (Maudlin, 2018). Such laws
could be fit into the time evolution paradigm, but not the relativistic time evolution paradigm.
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cannot influence anything outside its future light-cone and cannot be influenced by anything

outside its past light-cone.21 To be more precise, you can prove that if two solutions agree on

the values of the function u and its time derivatives ∂u
∂t at a given time within the spherical

spatial region bounded by the past light-cone of some future spacetime point (~x, t), the two

solutions will agree on the value of u at (~x, t). Solutions to the inhomogeneous (sourced) wave

equation, �u = f , will also satisfy such a causality theorem for a fixed source f because the any

solution can be divided into a free part uin (that obeys the homogenous wave equation and can

be interpreted as describing incoming waves that are not attributable to the source function f)

and a retarded part uret (where the value of uret at any space-time point is fixed by f along

the past light-cone of that point). Given these causality results, it seems like there should be a

way to formulate inhomogeneous wave equations, like the wave equations for the potentials (18)

and (19), that makes the causal structure manifest and satisfies the conditions that we laid out

earlier for spatiotemporally local dynamics linking past light-cone to future light-cone. As we

will see, this can be done straightforwardly in one dimensional space, but is surprisingly difficult

in three dimensional space.

Let us begin by considering the inhomogeneous wave equation in one dimensional space,(
∂2

∂x2
− 1

c2
∂2

∂t2

)
u = f , (24)

with f treated as a fixed source function defined across space and time. D’Alembert’s method

for solving the homogeneous wave equation introduces new variables

η = x+ ct

ξ = x− ct . (25)

We can use these variables to rewrite (24) as

4
∂

∂η

∂

∂ξ
u = f , (26)

where the derivatives are now evaluated along the two perpendicular edges of the light-cone.

Taking the first derivative in (26) to be a future derivative and the second to be a past

derivative, the wave equation becomes

4

(
∂

∂η

)f (
∂

∂ξ

)p
u = f . (27)

21For discussion of causality theorems for one and three-dimensional wave equations, see Zachmanoglou & Thoe
(1976, ch. 8); Folland (1995, ch. 5); Evans (1998, sec. 2.4.3); Strauss (2008, sec. 9.1). For discussion of causality
theorems in electromagnetism (making use of the Lorenz gauge), see Wald (1984, sec. 10.2); Wald (2022, sec.
5.4).
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This can be written as a limit,

lim
ε→0

(
lim
δ→0

u(x+ cε+ cδ, t+ ε− δ)− u(x+ cε, t+ ε)− u(x+ cδ, t− δ) + u(x, t)

c2εδ

)
= f . (28)

This limit asks you to go up one edge of the light-cone shorter and shorter distances, each

time taking a limit toward that edge of the light-cone from outside the light-cone in the

direction perpendicular to the light-cone (as in figure 5). You are asking how the rate of change

along one edge of the light-cone, approaching from the past, changes as you go up the other

side of the light-cone into the future. This counts as a spatiotemporally local dynamical law

because the left-hand side gives a past-to-future light-cone neighborhood property as output

and the right-hand side gives what might be a space-time point property or a past light-cone

neighborhood property, depending on the source function f (as we will see below). Note that the

output is not a future-light-cone neighborhood property because at each point along the future

light-cone that you consider for the derivative with respect to η, you must look outside the

light-cone to evaluate
(
∂
∂ξ

)p
u (as is shown in figure 5). We can now follow up on a loose thread

from section 2: Even if we were to follow Easwaran (2014) and use open-ended derivatives instead

of closed-ended derivatives, the output of (27) would not be a future light-cone neighborhood

property because the past derivative with respect to ξ takes you outside the future light-cone.

Figure 5: If we rewrite the one-dimensional wave equation using D’Alembert’s variables as in (27)
and (28), then one must compare (a) how the values of the function u change as you approach
a spacetime point ε up the right edge of the future light-cone along the right edge of the past
light-cone (left image) to (b) the way the values of u change as you approach the spacetime point
of interest along the right edge of the past light-cone (right image).

Looking back at (27), you could just as well swap the order of the derivatives and go up

the other edge of the future light-cone. To prepare for extension to three spatial dimensions,

it would be best to imagine averaging the two orderings and not privileging either side of the

future light-cone,

2

(
∂

∂η

)f (
∂

∂ξ

)p
u+ 2

(
∂

∂ξ

)f (
∂

∂η

)p
u = f . (29)
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We can take this to be our formulation of the one dimensional wave equation as a

spatiotemporally local dynamical law.

Let us now consider the inhomogeneous wave equation in three dimensional space(
∇2 − 1

c2
∂2

∂t2

)
u = f , (30)

with f again treated as a fixed source function defined across space and time. The wave

equations for the potentials, (18) and (19), fit this general form. Writing this wave equation

as a spatiotemporally local dynamical law is not as straightforward as you might expect, but

here is one way to do it. Let us focus our attention on the evolution at the origin, noting that any

point in space can be treated as the origin. Using spherical coordinates with θ as the azimuthal

angle and φ as the polar angle, the wave equation (30) for u at the origin becomes

ˆ
dθdφ

4π
sinφ

(
3
∂2

∂r2
− 1

c2
∂2

∂t2

)
u = f , (31)

where
´
dθdφ
4π sinφ, or

´
dΩ
4π , integrates over the solid angle Ω and divides by the total solid angle.

For the time derivative term, this integral is trivial. To see that the Laplacian in (30) can be

replaced by a radial second derivative in (31), plug the expansion

∂

∂r
= cos θ sinφ

∂

∂x
+ sin θ sinφ

∂

∂y
+ cosφ

∂

∂z
(32)

into the integral over the solid angle. The cross terms drop out and you are left with

ˆ
dΩ

4π

(
3
∂2

∂r2

)
u =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u = ∇2u . (33)

We can now introduce new variables going out along the future and past light-cones,

η = r + ct

ξ = r − ct , (34)

similar to D’Alembert’s variables (25) from the one dimensional case. Using these variables, the

wave equation at the origin (31) is

ˆ
dΩ

4π

(
2
∂2

∂η2
+ 2

∂2

∂ξ2
+ 8

∂2

∂η∂ξ

)
u = f . (35)

In the integral, for a given θ and φ, the ∂2

∂η2 term asks you to take a second derivative along the

future light-cone in that direction and the ∂2

∂ξ2 term asks you to take a second derivative along

the past light-cone in that direction. This past light-cone derivative should give the same result

as taking the forward light-cone derivative in the opposite direction, −r̂. Integrating over all
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angles,22

ˆ
dΩ

4π

(
∂2

∂η2

)
=

ˆ
dΩ

4π
sinφ

(
∂2

∂ξ2

)
. (37)

We can thus combine the first two terms in (35) to simplify the equation, yielding

4

ˆ
dΩ

4π

(
∂2

∂η2
+ 2

∂2

∂η∂ξ

)
u = f . (38)

Regrouping gives

4

ˆ
dΩ

4π

(
∂

∂η

[
∂

∂η
+ 2

∂

∂ξ

])
u = f . (39)

Let us now distinguish past and future derivatives as in (27),

4

ˆ
dΩ

4π

((
∂

∂η

)f [(
∂

∂η

)p
+ 2

(
∂

∂ξ

)p])
u = f . (40)

For given angles θ and φ, the integrand asks to consider how a sum of two past light-cone

derivatives (one in the r̂ direction and one in the −r̂ direction) changes as you move along the

future light-cone in the r̂ direction (see figure 6). With this form of the wave equation, we have

arrived at a spatiotemporally local dynamical law, with the left-hand side giving a past-to-future

light-cone neighborhood property and the source function on the right-hand side being either a

space-time point property or a past light-cone property (as we are about to see).23

The wave equation for the scalar potential (18) fits the form of a three dimensional wave

equation (30) and thus we can formulate it as a spatiotemporally local law like (40),

ˆ
dΩ

4π

((
∂

∂η

)f [(
∂

∂η

)p
+ 2

(
∂

∂ξ

)p])
φ = −πρ , (42)

22Here is a more formal proof of (37). Expanded in terms of r and t derivatives, the difference between the left
and right-hand sides of (37) is proportional to

ˆ
dΩ

4π

(
∂

∂r

∂

∂t

)
= 0 . (36)

The fact that this term vanishes can be seen by noting that radial derivatives in opposite directions will cancel,
or, by using the expansion of ∂

∂r
in (32).

23One should not read the speed of causal influence directly from the ability to put the wave equation in a
spatiotemporally local form like (40). If you started with a three dimensional wave equation (30) with the speed of
light of light doubled (c→ 2c), then causal influences would propagate in a way that violates a speed-of-light-based
standard for spatiotemporal locality. However, you can follow parallel reasoning to the derivation above to get
an expression for the wave equation at the origin as

ˆ
dΩ

4π

((
∂

∂η

)f [11

2

(
∂

∂η

)p

+
13

2

(
∂

∂ξ

)p])
u = f , (41)

which meets our earlier standard for being a spatiotemporally local dynamical law. We must reject this formulation
as not accurately capturing the way that the past generates the future for the modified wave equation. [Note:
Perhaps there is something better to say here. I welcome suggestions.]
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Figure 6: The spatiotemporally local form of the three dimensional wave equation (40) asks
us to compare, for each direction picked out by a set of angles θ and φ, (a) how the values of
the function u are changing as you approach a point displaced from the point of interest by
an arbitrarily amount along that direction into the future light-cone from that direction along
the past light-cone and the opposite direction to (b) how the values of u are changing as you
approach the point of interest from that direction along the past light-cone and the opposite
direction. This is shown in the two images above depicting only the x, y, and t dimensions. The
angle θ picks out the y direction. The darkening dots show different points where u would be
evaluated in calculating the light-cone derivatives for this direction.

where the φ that appears here is the scalar potential, not to be confused with the azimuthal

angle. Here the density of charge ρ acts as the source term. Sometimes ρ is thought of as a

coarse-grained blurring of an underlying spiky charge distribution of distinct bodies. Because it

is a kind of average of the charge over a small region, you might worry that it involves looking

outside of the past light-cone—and thus that (42) may fail to be a spatiotemporally local law.

Let us think of ρ as (at least within the context of the theory) fundamental, either including

delta functions (if matter is modeled as point charges) or smoothly varying (if matter is modeled

using charge distributions). Then, we can take the value of ρ at a point to be a space-time point

property and (42) fits the mold of a spatiotemporally local dynamical law.

The wave equation for the vector potential (19) is three separate three dimensional wave

equations of the earlier form (30), one for each component of the potential. We can formulate it

as

ˆ
dΩ

4π

((
∂

∂η

)f [(
∂

∂η

)p
+ 2

(
∂

∂ξ

)p])
~A = −π

c
~J . (43)

For point charges, current density ~J that sources the vector potential can be formed by combining

contributions of the form ρ~v associated with each point charge, where ρ is a delta function

centered on the charge’s location and ~v is the charge’s velocity (Landau & Lifshitz, 1971, sec.

28). As before, the velocity can be understood as a past derivative of the body’s location and

thus depends on an arbitrarily short segment of its past trajectory. If the body has never moved

faster than the speed of light, then this trajectory will lie within the past light-cone and the

velocity will be a past light-cone neighborhood property. The current density will thus also
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be a past light-cone neighborhood property. What if charged matter is modeled instead by a

charge distribution? In that case, the current density at a moment cannot be read off from the

present charge distribution and its recent history. Maudlin (2018, pg. 8) gives the example of a

uniform sphere that maintains a uniform charge density. This is compatible with there being no

current density or with their being a current density corresponding to a rotation of the charge

about some axis. Thus, unlike the velocity of a point charge, the current density of a continuum

cannot be reduced to the historic behavior of charge. One option would be to treat the charge

distribution and current density as distinct properties of the instantaneous state. The current

density then becomes a space-time point property, not a past light-cone neighborhood property.

Again, (43) counts as a spatiotemporally local dynamical law.

In this paper, we have assumed that velocity should be reduced to changes in position over

time. There is an alternative view available according to which instantaneous velocity is a

genuine feature of the world at a moment that ought not be reduced to changes in position.

Lange (2005) calls this view “velocity primitivism.” As he puts it, “instantaneous velocity and

trajectory are related only by virtue of natural law, not by metaphysical necessity.” For the

current density of a continuum, we have ended up in a similar position. Current density and

charge density will be related by a law of nature: the continuity equation for charge,

∂ρ

∂t
= −~∇ · ~J . (44)

This equation can be derived from Maxwell’s equations and should be derivable from the

fundamental laws governing the evolution of the charged matter.24 Thus, the continuity equation

for charge might be regarded as a non-fundamental law (that, because of the divergence, is not

spatiotemporally local—which is fine for a non-fundamental law).

We have been attempting to fit electromagnetism into the relativistic time evolution paradigm

and thus far we have focused on the laws governing the evolution of the electromagnetic field.

To complete the task, we must also analyze the forces on charged matter and the reaction of

matter to these forces. First, let us consider the Lorentz force law for point charges (15). Using

the potentials, we can rewrite this law as25

~F = −q~∇φ− q

c

∂ ~A

∂t
+
q

c
~v ×

(
~∇× ~A

)
= −q~∇φ− q

c

∂ ~A

∂t
+
q

c

(
~∇
(
~v · ~A

)
−
(
~v · ~∇

)
~A
)

= −q~∇
(
φ− 1

c
~v · ~A

)
− q

c

D ~A

Dt
. (45)

In the last line, D
Dt = ∂

∂t + (~v · ~∇) is the convective derivative, a derivative taken along the

path of the charge. If we take this to be a past derivative and assume that the particle has

24For example, if matter is modeled as a classical Klein-Gordon or Dirac field then conservation of charge can
be derived from the wave equations governing these fields.

25See Landau & Lifshitz (1971, sec. 17); Semon & Taylor (1996, pg. 1365); Griffiths (2013, pg. 442).
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not moved faster than the speed of light, then the final term is a past light-cone neighborhood

property. The remainder of the expression is a gradient that appears to require looking outside

the past light-cone, and thus to cause trouble if we want the force to be a past light-cone

neighborhood property so that the dynamics are spatiotemporally local. There is a way to

address this problem, though it might feel like a cheap trick. In analogy with (25), we can

introduce coordinates ηi = xi + ct and ξi = xi − ct to replace the gradient and write the xi-th

component of the force as

Fi = −q
[
∂

∂ηi
+

∂

∂ξi

](
φ− 1

c
~v · ~A

)
− q

c

DAi
Dt

, (46)

where i is an index on the spatial dimensions and should not be confused with the earlier use of

i as an index on the charges. Making all of the derivatives past derivatives gives the force law

Fi = −q
[(

∂

∂ηi

)p
+

(
∂

∂ξi

)p ](
φ− 1

c
~v p · ~A

)
− q

c

(
D

Dt

)p
Ai . (47)

To clarify that the derivatives do not act on ~v p, this can be rewritten as

Fi = −q
[(

∂

∂ηi

)p
+

(
∂

∂ξi

)p ]
φ+

q

c
~v p ·

([(
∂

∂ηi

)p
+

(
∂

∂ξi

)p ]
~A

)
− q

c

(
D

Dt

)p
Ai . (48)

In words: the force from the electromagnetic field in a given direction depends on (i) the way the

scalar potential is changing forward and backward in that direction along the past light-cone, (ii)

the dot product of the charge’s velocity with the way the vector potential is changing forward

and backward in that direction along the past light-cone, and (iii) the time derivative of the

vector potential along the past trajectory of the charge.

Modeling matter as a continuous charge distribution, the above Lorentz force law for point

charges (48) becomes an equation for the force density fi in the xi-th direction,

fi = −q
[(

∂

∂ηi

)p
+

(
∂

∂ξi

)p ]
φ+

q

c
~v ·
([(

∂

∂ηi

)p
+

(
∂

∂ξi

)p ]
~A

)
− q

c

(
D

Dt

)p
Ai , (49)

where the velocity that appears here is a function of space and time.

As the final piece of the puzzle, let us now discuss the way that charges respond to forces.

That is not always considered part of electromagnetism proper and does not appear in (11)–(15),

but it would be needed to arrive at a complete theory that has a hope of fitting the relativistic

time evolution paradigm. For point charges, we might use Newton’s second law (4), ~F = m~a pf ,

as a non-relativistic approximation to the reaction of charges to forces. The relativistic law

would be

~F =

(
d

dt

)f
~p p , (50)

using a relativistic expression for the momentum,

~p p =
m~v p√

1− |~v p|2
c2

. (51)

30



From (50) and (51) you can see that no matter how much force you exert on a massive body

to increase its momentum, you cannot accelerate it beyond the speed of light—the momentum

approaches infinity as the speed approaches c. Because the particles do not move faster than

c, the momentum ~p p will be a past light-cone neighborhood property and the force ~F will

be a past-to-future light-cone neighborhood property. As in section 4, you could combine the

non-dynamical Lorentz force law (47) and the dynamical reaction law (50) into a single dynamical

law (assuming that the only forces at play are electromagnetic forces).

If the matter is modeled using continuous distributions of charge instead of point charges,

the reaction of matter to forces is more complicated and will depend on the nature of the matter.

You would need to couple some theory of the matter with the above laws of electromagnetism to

get a complete theory that could fit the relativistic time evolution paradigm. A neatly relativistic

way to do this would be to model the matter using a classical Klein-Gordon or Dirac field in a

Maxwell-Klein-Gordon or Maxwell-Dirac classical field theory. Then, one would need to show

that the wave equations for these fields can be formulated in ways that fit the relativistic time

evolution paradigm, as we have seen that the wave equations of electromagnetism can—(42)

and (43). For the Klein-Gordon field, that is straightforward as we can simply carry over the

techniques that were used for the electromagnetic field.26 For the Dirac field, it is not so clear

how to formulate the wave equation as a spatiotemporally local dynamical law. Note that with

either the Klein-Gordon or Dirac equation in place, the Lorentz force law (49) is not needed as

a fundamental non-dynamical law (though it could still be regarded as a non-fundamental law

giving the density of force exerted by the electromagnetic field on the Klein-Gordon or Dirac

field27).

Putting it all together, we have arrived at a way of formulating electromagnetism that seems

like it could fit the relativistic time evolution paradigm. For point charges, we can take the

laws to be given by the wave equations for the potentials, (42) and (43), the Lorentz force law,

(48), and the relativistic version of Newton’s second law (50). However, there is danger on the

horizon. This version of electromagnetism could run into problems of self-interaction like those

faced by Newtonian gravity with point masses (discussed in section 4). Just as the gravitational

field becomes infinite as you approach a point mass and ill-defined at its location, the electric

field becomes infinite as you approach a point charge and ill-defined at its location. This causes

trouble for the standard Lorentz force law (15). Does our new formulation of the force law (47)

face the same problems? For a single point charge q at rest, we can use the scalar potential

φ = q
r and set the vector potential to zero. The force law (15) yields

Fi = −q
[(

∂

∂ηi

)p
+

(
∂

∂ξi

)p ](q
r

)
. (52)

Focusing on the x1 direction, the first derivative approaches from the left (along the past

light-cone) and the second approaches from the right (along the past light-cone). The two

26You can prove the same kind of causality theorem for the Klein-Gordon equation as the one we discussed for
the wave equation near the beginning of this section Wald (1984, sec. 10.1); Strauss (2008, pg. 234, problem 8).

27The idea that fields can experience forces is discussed in Sebens (2018, 2021).

31



contributions cancel, as they are both infinite but with opposite signs.28 There is no force on

the charge from its own electromagnetic field. That is nice. More work could be done to see

exactly how well this formulation of electromagnetism can handle self-interaction (and whether

it can recover effects like radiation reaction), but it is interesting to see that it has a way to solve

the simplest problem of self-interaction. Perhaps this will suffice for addressing the problems of

self-interaction or perhaps we will have to avail ourselves of one of the strategies that have been

pursued for solving the problems of self-interaction for point charges in electromagnetism, such

as replacing the Lorentz force law with the Lorentz-Dirac force law.29

We have seen that this formulation of electromagnetism with point charges satisfies the first

two conditions of the relativistic time evolution paradigm: the dynamical and non-dynamical

laws take the correct form. We have not yet settled whether the formulation satisfies the

third condition as we have not yet settled whether the theory is deterministic. To do so, we

must figure out whether, in general, an arbitrarily thin law-abiding time slice yields a unique

law-abiding future. That requires looking at the coupled equations for the field and particle

dynamics—not merely finding the field produced by a specified source or the force from a

specified field.30 Doing this honestly would require a solution to the aforementioned problems of

self-interaction. There is another complication as well. Hartenstein & Hubert (2021) have shown

that specifying law-abiding combinations of electromagnetic field and point charge states at an

instant generically yields infinities or discontinuities that propagate along the future light-cone

(called “shock fronts”) and lead to ill-defined dynamics.31 These shock fronts occur because

the arbitrarily chosen field around a point charge does not capture the way that the charge’s

past motion would have acted as a source for the field. For example, at some moment you

might have a particle with an initial velocity surrounded by the Coulomb field of a stationary

point charge. That is not compatible with any reasonable past. Requiring that the input to the

laws be an (arbitrarily short) time interval where the laws are obeyed should help in addressing

these problems because we are assuming that the interaction between particle and field has been

well-behaved in the immediate past of the moment after which we are calculating the future

evolution.

Shifting now to consider electromagnetism with a continuous charge distribution, the wave

equations for the potentials, (42) and (43), would again be laws. In addition, we would need

law(s) determining the evolution of the charged matter. Although the Lorentz force density law,

(49), can be formulated as a spatiotemporally local dynamical law, it will not be a fundamental

law for certain classical completions of electromagnetism. In particular, if we model the evolution

of matter using the Klein-Gordon or Dirac equations in Maxwell-Klein-Gordon or Maxwell-Dirac

field theory, it is not needed. As was discussed earlier, the Klein-Gordon equation can be

28If we take the value of φ at the particle’s location to be positive or negative infinity (depending on the sign of
q), then the two derivatives are infinite with opposite signs. If we take the value of φ at the particle’s location to
be ill-defined, then the derivatives are ill-defined as well (unless we use Easwaran’s open-ended derivatives from
section 2).

29See Frisch (2005, pg. 59–63); Earman (2011, sec. 3); Kiessling (2011); Lazarovici (2018, sec. 3.1).
30See Frisch (2004, sec. 2); Frisch (2005, pg. 32–35).
31See also Lazarovici (2018, sec. 8.1).
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formulated as a spatiotemporally local dynamical law and one might find a way to do so for the

Dirac equation. The Maxwell-Klein-Gordon and Maxwell-Dirac field theories could then satisfy

the first two conditions of the relativistic time evolution paradigm. They may satisfy the third

condition as well—the dynamics appears to be deterministic and, although self-interaction is

present, there is no infinite or ill-defined self-interaction.32

In this section we have seen that electromagnetism in the Lorenz gauge can be formulated

in a way that satisfies the first two conditions of the relativistic time evolution paradigm, with

the dynamical and non-dynamical laws taking an appropriate form. For point charges, the laws

would be (42), (43), (48), and (50). These laws are serviceable, but they are not the most

elegant and it would be valuable to search for a better spatiotemporally local formulation of

electromagnetism.

The third condition of the relativistic time evolution paradigm is complicated by problems

of self-interaction, but determinism can potentially be achieved if we reject point charges

and instead treat the charged matter as a continuous charge distribution (as is done in

Maxwell-Klein-Gordon or Maxwell-Dirac field theory).

8 Conclusion

This article opened with a quote from Maudlin presenting the idea of dynamic production, a

quote that comes from the end of the final chapter of his book The Metaphysics Within Physics.

Here is that quote again, this time with more context:

“The non-Humean [dynamic production] package is, I think, much closer to the

intuitive picture of the world that we begin our investigations with. Certainly,

the fundamental asymmetry in the passage of time is inherent in our basic initial

conception of the world, and the fundamental status of the laws of physics is, I think,

implicit in physical practice. Both of the strands of our initial picture of the world

weave together in the notion of a productive explanation, or account, of the physical

universe itself. The universe, as well as all the smaller parts of it, is made: it is

an ongoing enterprise, generated from a beginning and guided towards its future by

physical law. . . . I don’t think that scientific results have, as yet, impeached the basic

non-Humean picture, and no philosophical arguments give us reason to displace it.

The metaphysics within physics is, as of now, non-Humean, and we can do no better

as philosophers than embrace it.” (Maudlin, 2007, pg. 182–183)

The appeal of the dynamic production account of laws is that it seems to be such a natural way

of understanding much of physics. We have seen here that, even for the parts of physics that

seem most conducive to an interpretation in terms of dynamic production (classical mechanics

and electromagnetism), there are serious challenges that arise. We have also seen that these

challenges can be addressed. Being careful about the inputs and outputs, we can understand

32See Sebens (2023).
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how the laws produce the future and how that production might be incorporated in a relativistic

picture of reality. Let us now turn briefly to two physical theories that are more hostile to an

interpretation in terms of dynamic production: quantum field theory and general relativity. The

purpose of this quick treatment is just to suggest that the dynamic production account has a

shot at being extended to our most successful physical theories, and should not be viewed as

roadblocked in a way that would make the kind of project pursued here a futile exercise.

For the non-relativistic quantum mechanics of a fixed number of particles, there exist a

handful of “interpretations of quantum mechanics” that give explicit proposals about the laws

and ontology—such as GRW theory, Bohmian mechanics, the many-worlds interpretation, and

the many interacting worlds approach. These four options can all be fit straightforwardly into

the time evolution paradigm, with either first-order or second-order dynamics depending on the

interpretation. The many-worlds interpretation simply takes the first-order Schrödinger equation

to give the dynamics of the wave function. This is naturally interpreted as taking the wave

function at a moment as input (with no need to look to the arbitrarily-short past) and returning

as output the way the wave function changes into the arbitrarily short future (Easwaran, 2014,

pg. 857). GRW Theory introduces stochastic exceptions to the Schrödinger equation that can be

understood as giving probabilities for different behavior in the arbitrarily short future (Sebens,

2015a, sec. 2). Bohmian mechanics is often presented as adding a first-order guidance equation

that is another law, beyond the Schrödinger equation, determining the velocities of particles from

their locations and the wave function (velocities that could be interpreted as future neighborhood

properties). However, a second-order guidance equation can be used instead provided we impose

the first-order guidance equation as a restriction on initial conditions (Goldstein & Struyve,

2015; Dewdney, 2023). In the many interacting worlds approach, the dynamics is second-order

as particles are reacting to forces by Newton’s second law and (at the fundamental level) there

is no wave function evolving by the Schrödinger equation (Hall et al., 2014; Sebens, 2015b).

The fact that quantum theories normally posit first-order dynamics has been used by Builes

& Impagnatiello (forthcoming) to argue that we live in a world where the present moment is

enough to produce the future (the arbitrarily-short past is not needed as input)—in their words,

“our universe is Markovian.” I prefer to leave open whether the fundamental dynamics will turn

out to be first-order or second-order.

Deciding between these competing interpretations of quantum mechanics is difficult. The

many-worlds interpretation has been touted as “the only game in town” because it is the

only option that can be immediately extended to relativistic quantum field theory (Wallace,

2012, pg. 35; Wallace, 2023). That virtue could be challenged either because the many-worlds

interpretation has other serious problems (Adlam, 2023) or because it is not so easy to formulate

quantum field theory in terms of a quantum state evolving by a Schrödinger equation (Sebens,
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2022a).33 The problem for Schrödinger evolution is that it is unclear whether the quantum state

is a particle wave function (in Fock space) or a field wave functional, though hopefully one of these

proposals can be made to work. Although the other interpretations may not be as straightforward

to extend to quantum field theory as the many-worlds interpretation, there exist a number of

promising strategies for doing so. The attempts to extend GRW and Bohmian mechanics to

quantum field theory include non-local interactions that are incompatible with the relativistic

time evolution paradigm (Maudlin, 2019, ch. 7). This is to be expected, as it is the lesson of EPR

and Bell’s theorem (along with the relevant experimental tests) that any single-world quantum

theory must include such non-local interactions (Maudlin, 2014, 2019). One might react to this

situation by abandoning the relativistic time evolution paradigm and instead simply seeking

theories that fit the original time evolution paradigm, accepting that dynamic production occurs

relative to some preferred foliation. Alternatively, one might work to show that a theory with

multiple worlds (like the many-worlds interpretation or the many interacting worlds approach)

can be cast in a form that fits the relativistic time evolution paradigm. Of course, one could

also react to this solution by abandoning dynamic production (Adlam, 2023). I simply want to

highlight that there are ways to potentially retain dynamic production in quantum field theory.

Let us now move on to general relativity. In the introduction to their paper, Chen &

Goldstein (2022) present the “Einstein equation (of general relativity)” (a.k.a. the Einstein

field equations) as one of the motivations for adopting their laws-as-constraints account, over

a dynamic production account, because it is an equation that “in its usual presentation is

non-dynamical.” Later, they return to the issue and explain that “There are ways of converting

[the Einstein field equations] into FLOTEs [fundamental laws of temporal evolution] that are

suitable for a dynamic productive interpretation.” Chen & Goldstein (2022) give the ADM

formalism as an example of a way this might be done (Arnowitt et al., 1962), complaining that

this formalism discard solutions that are not globally hyperbolic (a bug that might be regarded as

a feature if our universe is indeed globally hyperbolic and this formalism more precisely narrows

down the space of physical possibilities34). Along similar lines, Adlam (2022a, sec. 2.2) writes

“. . . there are a number of theories in modern physics where it doesn’t make a great

deal of sense to have a rigid division between ‘state space’ and ‘evolution laws.’ For

example, a solution to the Einstein equations of General Relativity is not a state at a

time but an entire history of a universe . . . so it doesn’t seem to require any concept

of time evolution at all. A time-evolution formulation of the Einstein equations does

exist [(Ringström, 2009; Fourès-Bruhat, 1952)], but the original global formulation

remains central to research in the field and there seems no obvious reason to think

that the time-evolution formulation must be more fundamental.”

33Adlam (2022a, sec. 2.1) takes the use of path integrals in quantum field theory to suggest that the theory
might best be understood outside the time evolution paradigm. We discussed path integrals in classical mechanics
at the end of section 4 and I would say the same thing here. While it may be possible to formulate the theory
outside the time evolution paradigm, path integrals in quantum field theory can be viewed as tools for calculating
state evolution.

34See Maudlin (2007, pg. 175, 189–191).
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For our purposes here, the most important thing to note is that both Chen & Goldstein (2022)

and Adlam (2022a) acknowledge that there are versions of general relativity that seem to broadly

fit the time evolution paradigm. So, although there remains work to be done for a proponent

of dynamic production, there is a path forward. One version of general relativity that seems

especially well-suited to an interpretation in terms of dynamic production is the classical spin-2

field theory approach (Salimkhani, 2020; Linnemann et al., forthcoming). I have elsewhere

called this the field-theoretic approach and contrasted it with the prevailing geometric approach

(Sebens, 2022b, sec. 5). On the field-theoretic approach, gravity is a field on flat Minkowski

spacetime much like the electromagnetic field and the field equations could thus potentially be

fit into the relativistic time evolution paradigm. Because the field-theoretic approach treats

gravity as similar to other physical interactions, it is arguably an attractive starting point for

theories of quantum gravity.
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